Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Комбинаторика.doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
171.52 Кб
Скачать

Комбинаторика

1. Комбинаторика и лингвистические множества. Языковеду постоянно приходится решать задачи, в которых рассматриваются комбинации и расположения элементов, принадлежащих определенному лингвистическому множеству. Так, например, синтаксисту важно знать, сколько позиционных вариантов может давать в устно-разговорной речи предложение сегодня идет дождь. Фонетисту и специалисту в области кодирования текста нужно знать, сколько двухбуквенных, трехбуквенных и т.д. комбинаций может дать русский алфавит. Иногда при этом нужно выяснить, какая часть этих комбинаций образует слова и их формы, использующиеся в современном русском языке. Задачи, в которых требуется ответить на вопрос «сколько?» или «сколькими способами?», называются комбинаторными, а раздел математики, занимающийся решением подобных задач, именуется комбинаторикой.

Комбинаторика (комбинаторный анализ, комбинаторная математика) – раздел математики, посвящённый решению задач выбора и расположения элементов некоторого, обычно конечного, множества в соответствии с заданными правилами.

Простейшие задачи комбинаторики можно решать перебором всех возможных вариантов. Так, например, путем перебора нетрудно установить, что предложение сегодня идет дождь имеет в русской разговорной речи 6 вариантов: сегодня идет дождь; сегодня дождь идет; дождь сегодня идет; дождь идет сегодня; идет сегодня дождь; идет дождь сегодня. Однако число комбинаций быстро растет с увеличением числа составляющих их элементов. Так, например, четыре слова (увы, сегодня, дождь, идет) дают 24, пять слов – 120, шесть – 720 позиционных вариантов и т. д. Не все из этих вариантов допустимы с точки зрения норм современного литературного языка. Определить допустимые варианты путем простого перебора оказывается зачастую невозможным. Поэтому, сталкиваясь с такими комбинаторными задачами, прибегают к типовым схемам решения, учитывающим лингвистические или какие-либо другие ограничения.

2. Размещения. Предположим, что имеется алфавит, включающий п элементов. Из этих элементов составляются m-членные комбинации (соединения), причем каждый из п элементов может входить в соединение не более одного раза.

Т акой тип комбинаций называется размещением. Число размещений из п элементов по т определяется по формуле:

Произведение натуральных чисел от единицы до какого-либо данного натурального числа n, то есть 1•2•3•......•n , называется «факториалом» (англ. factorial, от лат. factor – делающий, производящий) и обозначается n! Термин ввёл Л. Арбогаст (1800), обозначение n!К. Крамп (1808).

Н апример, из 32 букв русского алфавита можно составить

двухбуквенные комбинации, не содержащие повторений букв. По данным четырехтомного «Словаря русского языка» (М., 1957–1961), из этих сочетаний только 114 выступает в качестве самостоятельных слов (имена собственные, сокращения, архаизмы и диалектные слова при этом не учитываются).

~

3 . Размещения с повторениями. Снова возьмем алфавит из п элементов и будем составлять m-членные соединения, допуская повторения каждого элемента от 0 до m раз. Тогда общее число соединений, называемых размещениями с повторениями, находится по формуле

Т ак, например, из 30 букв русского алфавита (исключая ь и ъ) можно составить 302 = 900 двухбуквенных серий (например, для денежных знаков) и 303 = 27 000 трехбуквенных серий.

4. Перестановки. Пусть размещения из п разных элементов взяты по п элементов, т.е. каждое размещение содержит все п элементов алфавита и отличается от других лишь порядком этих элементов. Такие размещения называются перестановками. Для нахождения числа перестановок используют формулу Pn = n!

~

5. Перестановки с повторениями. В тех случаях, когда среди образующих перестановки элементов имеются одинаковые, получаются соединения, называемые перестановками с повторениями. Число этих перестановок вычисляется по формуле

Pnn1 , n2 , ... nk = , где п общее количество элементов, входящих в перестановку, a n1, n2,, nk — количество одинаковых элементов в первой, второй, ..., k-й группах.

Определим, например, число перестановок с повторениями, которое можно получить из букв, составляющих словоформу математика. Всего в перестановках участвует десять букв, т. е. n = 10; буква м повторяется два раза, поэтому если бы все остальные буквы были различными, то искомое число перестановок, было бы равно P210= 10! / 2!. На самом деле, кроме двух одинаковых м в нашем слове имеются три а и два т. Поэтому общее число перестановок, полученных из букв, входящих в словоформу математика, равно

~

P 102,2,3 =

Кстати говоря, среди более чем ста пятидесяти тысяч десятибуквенных комбинаций, составленных из двух м, трех а, двух т и е, к, и, только одна — математика является «отмеченной» в системе русского языка. Остальные оказываются лишенными смысла, избыточными с точки зрения современного русского языка последовательностями букв.

6 . Сочетания. В размещениях из n элементов по m соединения отличаются друг от друга либо элементами, либо их порядком, либо и элементами и их порядком. Объединим в отдельные группы такие комбинации, которые содержат т одинаковых элементов и отличаются друг от друга только порядком этих элементов. Нетрудно заметить, что в каждой группе будет ровно Рт элементов. Группы комбинаций, различающиеся только элементами, называются сочетаниями из п элементов по т. Их число равно

~

7. Сочетания с повторениями. Сочетаниями из п элементов по т с повторениями называются такие соединения, которые включают т из п различающихся между собой элементов при условии, что один и тот же элемент может включаться в комбинацию несколько раз. Два соединения считаются различными, если они отличаются хотя бы одним элементом, и одинаковыми, если они состоят из одних и тех же элементов. Число сочетаний из п элементов по т с повторениями определяется по формуле