- •1.Введение в системный анализ и моделирование
- •1.1.Введение
- •1.2. Предмет системного анализа
- •1.3. Многоаспектность строения и функционирования систем
- •1.4. Цель, задача, структура, система, системность
- •Исходная таблица состояний информационно-логической задачи.
- •1.5. Классификация систем. Большие и сложные системы.
- •1.6. Управление в системе и управление системой.
- •1.7 Выводы
- •Вопросы для самоконтроля
- •2.Теория графов и программно-целевой метод анализа предметных областей
- •2.1. Методы теории множеств в информационных классификациях
- •2.2 Обозначения теории графов
- •2.3. Семантические сети
- •2.4. Пример использования системного анализа предметной области
- •2.5. Программно-целевой подход в системных задачах
- •2.5.1.Этапы и область применения программно-целевого подхода
- •2.5.2.Алгоритм декомпозиции
- •2.5.2.1.Стадии анализа и синтеза
- •2.5.2.2. Метод структурного анализа
- •2.5.2.3. Методы декомпозиции
- •2.5.2.4. Требования, предъявляемые к декомпозиции.
- •2.5.2.5. Алгоритм декомпозиции
- •2.5.3.Агрегирование систем
- •2.5.3.1. Уровни агрегирования
- •2.5.3.2. Типы связей в системе
- •1.Связи взаимодействия (координации):
- •3.Связи преобразования:
- •2.5.3.3. Виды агрегирования
- •2.6. Выводы
- •Вопросы для самоконтроля.
- •7. Алгоритм декомпозиции.
- •3. Структурный подход к моделированию предметной области
- •3.1. Сущность структурного подхода
- •3.2. Методология функционального моделирования sadt
- •3.2.1. Технология структурного анализа и проектирования
- •3.2.2. Функциональная модель и ее состав
- •3.2.3. Иерархическая структура диаграмм.
- •3.2.4. Связи между функциями.
- •Типы связей и относительная их значимость.
- •Перечень типов связей и области применения.
- •3.3. Моделирование потоков данных
- •3.4. Моделирование данных
- •3.4.1. Case-метод Баркера
- •3.4.2. Методология idef1
- •3.5. Образец использования структурного подхода: фильмотека
- •3.5.1. Описание предметной области
- •3.5.2. Фазы проекта
- •Типы событий.
- •Матрица событий.
- •3.6. Выводы
- •Вопросы для самоконтроля
- •5. Моделирование потоков данных.
- •4.Объектно-ориентированная методология анализа и моделирования предметной области
- •4.1.Этапы развития uml и используемые методологии проектирования
- •4.1.1. Основные этапы развития uml.
- •4.1.2. Методология объектно-ориентированного программирования
- •4.1.3. Методология ооап
- •4.1.4. Особенности системного анализа и моделирования при проектировании информационных и программных систем
- •4.2. Базовые элементы языка uml
- •4.2.1. Общие сведения
- •4.2.2. Структура языка uml
- •4.2.3. Пакеты языка uml
- •4.2.4. Основные пакеты метамодели uml
- •4.2.4.1. Пакет «Основные элементы»
- •4.2.4.2. Пакет «Элементы поведения»
- •4.2.4.3. Пакет «Общие механизмы.
- •4.2.5. Особенности описания метамодели uml
- •4.2.6. Особенности изображения диаграмм uml
- •4.2.7. Примеры использования диаграмм
- •Interaction diagram (диаграмма взаимодействия)
- •5. Rational Rose и объектно-ориентированное проектирование
- •5.1. Функциональные особенности Rational Rose
- •5.2. Объектно-ориентированная методология анализа предметной области и моделирование бизнес-процессов
- •5.2.1. Средства и методы моделирования бизнес процессов
- •5.2.2. Пример моделирования предметной области
- •5.3. Выводы
- •Вопросы для самоконтроля.
- •1. Методология объектно-ориентированного программирования.
- •6. Методы анализа предметной области при нечетких условиях выбора решений
- •6.1. Нечеткая логика – математические основы
- •6.2. Основы нечеткого управления
- •Результаты анализа правил установки мощности калорифера.
- •6.3. Системы управления с нечеткой логикой
- •6.4. Выводы
- •Вопросы для самоконтроля
- •Нормативные источники
- •Обязательная литература
- •Рекомендуемая литература
- •Источники интернет
- •1.1.2.2 Осуществлять контроль качества обучения, в том числе посещаемости занятий, сроков их проведения, успеваемости и пр.
- •1.1.2.3 Организовать выполнение и защиту дипломных работ
- •1.1.3 Подвести итоги работ за год
- •1.2.2 Провести учебно–методическую работу в обеспечение выполнения учебного план
- •1.2.3 Выполнить учебный план
Interaction diagram (диаграмма взаимодействия)
Этот тип диаграмм включает в себя диаграммы Sequence diagram (диаграмма последовательностей действий) и Collaboration diagram (диаграмма сотрудничества), они позволяют всесторонне рассмотреть взаимодействие объектов в создаваемой системе.
Sequence diagram (диаграмма последовательностей действий).
Рис. 4.2.15. Диаграмма активности последовательностей действий.
Объекты системы взаимодействуют посредством приема и передачи сообщений объектами-клиентами и обработки этих сообщений объектами-серверами. При этом в разных ситуациях одни и те же объекты могут выступать и в качестве клиентов, и в качестве серверов.
Данный тип диаграмм позволяет отразить последовательность передачи сообщений между объектами.
Этот тип диаграммы не акцентирует внимание на конкретном взаимодействии, главный акцент уделяется последовательности приема/передачи сообщений. Для того чтобы окинуть взглядом все взаимосвязи объектов, служит Collaboration diagram.
Collaboration diagram (диаграммы сотрудничества)
Рис. 4.2.16. Диаграмма сотрудничества.
Такая диаграмма компактно отражает принимаемые и передаваемые сообщения объекта и их типы и может описать взаимодействие объектов независимо от последовательности передачи сообщений.
По причине того, что диаграммы Sequence и Collaboration являются разными взглядами на одни и те же процессы, Rational Rose позволяет создавать из Sequence диаграммы диаграмму Collaboration и наоборот, а также производит автоматическую синхронизацию этих диаграмм.
Class diagram (диаграмма классов).
Этот тип диаграмм позволяет создавать логическое представление системы, на основе которого создается исходный код описанных классов.
Элементы диаграммы отображаю иерархию систем, взаимосвязи интерфейсов (Interfaces) и классов (Classes). Этот тип диаграмм по содержанию противоположен диаграмме Collaboration отображающей объекты системы. Rational Rose позволяет использовать такие диаграммы в различных нотациях для создания классов.
В нотации Г. Буча (Booch) классы изображаются в виде чего-то нечеткого, похожего на облако. Это попытка показать, что класс – это лишь шаблон для создания по нему в дальнейшем конкретного объекта.
Рис. 4.2.17. Диаграмма классов в нотации Буча.
Нотация OMT более строга.
Рис. 4.2.18. Диаграмма классов в более строгой нотации.
Component diagram (диаграмма компонент).
Рис. 4.2.19. Диаграмма компонент.
Эта диаграмма (иначе, диаграмма модулей) нужна для покомпонентного распределения классов и объектов при физическом проектировании системы.
При проектировании больших систем может оказаться, что система должна быть разложена на несколько сотен или даже тысяч компонентов, и этот тип диаграмм позволяет не потеряться в обилии модулей и их связей.
Таким образом нетрудно видеть, что возможности объектно – ориентированного метода проектирования столь широки, что объем детального описания его языковых средств, функций и CASE средств далеко не является целью данного учебного пособия, выходит далеко за рамки данной книги. Поэтому с целью изучения данного метода анализа предметной области в следующем разделе мы рассмотрим его особенности с использованием CASE средства Rational Rose на примере анализа бизнес – процессов.
