
- •Учебное пособие
- •1. Основные параметры и характеристики усилителей
- •1.1. Понятие усилительного устройства
- •1.2. Основные характеристики уу
- •1.3. Классификация усилителей
- •1.4. Обобщенная структурная схема уу
- •Контрольные вопросы
- •2. Усилитель как линейный четырёхполюсник
- •3. Обратные связи в усилителях
- •3.1. Классификация обратных связей
- •3.2. Влияние отрицательной обратной связи на параметры и характеристики усилителя
- •Контрольные вопросы
- •4. Работа транзистора в усилительных каскадах
- •4.1. Схемы включения транзистора
- •4.2. Статические характеристики транзистора
- •4.3. Определение нч y-параметров по статическим характеристикам
- •4.4. Нагрузочные характеристики и оптимизация выбора рабочей точки по постоянному току
- •Контрольные вопросы
- •5. Классы работы усилительных каскадов
- •5.1. Усилитель класса a
- •5.2. Усилитель класса в.
- •5.3. Усилитель класса ав.
- •5.4. Усилитель класса с.
- •5.5. Усилитель класса d.
- •Контрольные вопросы
- •6. Работа полевого транзистора в усилительных каскадах
- •6.1. Особенности работы полевого транзистора
- •6.2. Зависимость характеристик пт от температуры
- •6.3. Составные транзисторы
- •Контрольные вопросы
- •7. Работа усилительного каскада по постоянному току
- •7.1. Обеспечение работы активного элемента по постоянному току
- •7.2. Методы термостабилизации положения рабочей точки транзистора
- •Метод термостабилизации положения рабочей точки транзистора с использованием оос основан на введении оос на постоянном токе.
- •7.3. Методика инженерного расчёта элементов эмиттерной термостабилизации
- •7.4. Строгий расчёт температурной нестабильности тока коллектора
- •7.5. Особенности задания рабочей точки и термостабилизации пт
- •Контрольные вопросы
- •8. Каскады предварительного усиления
- •8.1. Особенности работы каскадов предварительного усиления
- •8.2. Анализ работы каскада в области сч
- •8.3. Анализ работы каскада в области вч
- •8.4. Анализ работы каскада в области нч
- •Контрольные вопросы
- •9. Особенности расчёта резистивного каскада на биполярном транзисторе
- •Анализ работы каскада в области сч.
- •Анализ работы каскада в области нч.
- •Анализ работы каскада в области вч.
- •Контрольные вопросы
- •10. Усилительные каскады с коррекцией
- •10.1. Методика расчёта оптимальных параметров корректирующих элементов
- •10.2. Индуктивная вч коррекция На рис. 10.1 представлена схема вч коррекции с добавочной индуктивностью в каскаде на полевом транзисторе
- •Особенности расчёта схемы индуктивной вч коррекции в каскаде на биполярном транзисторе (рис.10.5)
- •10.3. Вч коррекция с использованием частотно-зависимой оос
- •Особенности работы схемы вч коррекции с использованием частотно-зависимой оос при высокоомной нагрузке
- •Особенности расчёта схемы вч коррекции с использованием частотно-зависимой оос в каскадах на биполярном транзисторе
- •10.4. Нч коррекция
- •Порядок расчёта элементов нч коррекции
- •Контрольные вопросы
- •11. Элементы регулировки в усилительных устройствах
- •11.1. Регулировка усиления
- •Потенциометрическая регулировка
- •Регулировка усиления за счёт оос
- •Регулировка усиления за счёт изменения положения рабочей точки транзистора
- •10.2. Регулировка частотной характеристики усилителя
- •Регулировка с использованием частотно-зависимых делителей
- •Регулировка с использованием частотно-зависимой оос
- •Эквалайзеры
- •Контрольные вопросы
- •12. Шумы многокаскадного усилителя
- •12.1. Оптимальный выбор транзистора
- •12.2. Оптимальный выбор рабочей точки
- •12.3. Оптимальное согласование по шумам
- •Контрольные вопросы
- •13. Усилители, охваченные 100% оос
- •13.1. Истоковый повторитель
- •13.2. Эмиттерный повторитель
- •Особенности работы эмиттерного повторителя напряжения на емкостную нагрузку
- •Контрольные вопросы
- •14. Оконечные каскады и усилители мощности
- •Энергетические параметры усилителей мощности.
- •Информационные параметры усилителей мощности
- •Классификация усилителей мощности.
- •14.1 Однотактные усилители мощности класса а
- •Графоаналитический метод определения коэффициента гармоник однотактного усилительного каскада.
- •14.2. Двухтактные усилители мощности
- •Особенности работы двухтактного усилителя мощности класса а
- •14.3. Двухтактные усилители мощности класса b
- •14.4. Двухтактные каскады в режиме ab
- •Двухтактные усилители на транзисторах противоположного типа проводимостей
- •Двухтактные усилители на транзисторах одного типа проводимости.
- •Недостатки аналоговых усилителей мощности.
- •14.5 Ключевые усилители мощности.
- •Ключевой усилитель мощности с широтно-импульсной модуляцией (кум с шим).
- •Рекомендуемая последовательность действий при расчете схемы кум с шим.
- •Ключевой усилитель мощности с импульсно-кодовой модуляцией (кум с икм).
- •Спектрально-ключевые усилители мощности.
- •Дискретно-аналоговые усилители мощности
- •Контрольные вопросы
- •15. Усилители постоянного тока
- •Основные параметры и характеристики упт.
- •Классификация усилителей постоянного тока
- •15.1. Упт с гальванической связью между каскадами
- •15.2. Дифференциальные усилители постоянного тока
- •15.3. Усилитель постоянного тока типа модулятор-демодулятор
- •15.4. Усилители с автоматической коррекцией нуля.
- •Контрольные вопросы
- •16. Операционные усилители и их применение
- •Свойства идеального оу:
- •16.1. Основные схемы включения операционных усилителей. Инвертирующее включение оу.
- •Неинвертирующие включение оу.
- •Дифференциальное включение оу.
- •Сумматоры на оу.
- •Дифференциаторы на оу.
- •И нтеграторы на оу.
- •Особенности построения усилителей переменного тока на оу.
- •Контрольные вопросы
16. Операционные усилители и их применение
Операционным усилителем (ОУ) принято называть интегральный усилитель постоянного тока с дифференциальным входом и двухтактным выходом, предназначенный для работы с цепями обратных связей. Название усилителя обусловлено первоначальной областью его применения–выполнением различных операций над аналоговыми сигналами (сложение, вычитание, интегрирование и др.). В настоящее время ОУ выполняют роль многофункциональных узлов при реализации разнообразных устройств электроники различного назначения. Они применяются для усиления, ограничения, перемножения, частотной фильтрации, генерации, стабилизации и т.д. сигналов в устройствах непрерывного и импульсного действия. Следует отметить, что современные монолитные ОУ по своим размерам и цене незначительно отличаются от отдельных дискретных элементов, например, транзисторов. Поэтому выполнение различных устройств на ОУ часто осуществляется значительно проще, чем на дискретных элементах или на усилительных ИМС.
Свойства идеального оу:
Бесконечно большой коэффициент усиления по напряжению (KОУ). Для реальных ОУ коэффициент усиления по напряжению KОУ составляет ~ 107.
Бесконечно большое входное сопротивление (Zвх). Для реальных ОУ Zвх100 ГОм.
Нулевое выходное сопротивление (Zвых0). Для реальных ОУ Zвых100 Ом.
Равенство нулю выходного напряжения (Uвых=0) при равных напряжениях на входах (
).
Отсутствие задержки при прохождении сигнала через усилитель
Эквивалентная схема ОУ представлена на рис. 16.1.
Рис.16.1. Упрощенная электрическая схема простого ОУ
16.1. Основные схемы включения операционных усилителей. Инвертирующее включение оу.
Схема инвертирующего включения ОУ приведена на рис.16.2.
Рис. 16.2 Схема инвертирующего включения ОУ
Как следует из названия схемы, входной и выходной сигналы сдвинуты друг относительно друга на 1800.
При анализе работы схемы будем полагать, что ОУ является идеальным. Поскольку коэффициент усиления ОУ стремиться к бесконечности, то:
-
.
(16.1)
Потенциал
в точке а
равен нулю, а, следовательно, и потенциал
в точке b
тоже должен быть равен нулю, поскольку
(16.1). Считая, что
,
а
имеем:
-
;
.
(16.2)
Пренебрегая входными токами ОУ, имеем:
-
.
(16.3)
Минус
перед правой частью равенства (16.3)
означает, что вход инвертирован. Как
видно из (16.3), коэффициент усиления схемы
для идеального ОУ не зависит от
собственного коэффициента усиления
микросхемы ОУ (
),
который является нестабильным. Выбирая
сопротивления
и
(или отношение
этих сопротивлений
)
высокостабильными, можно обеспечить
высокостабильный коэффициент усиления
схемы.
Входное сопротивление схемы равно сопротивлению .
Выходное сопротивление:
-
.
(16.4)
В
схеме инвертирующего включения выходное
сопротивление составляет доли омов.
При увеличении глубины ООС выходное
сопротивление уменьшается. Таким
образом, рассматриваемую схему нельзя
нагружать на низкоомную нагрузку:
поскольку выходной ток неограниченно
возрастает ОУ выйдет из строя. Минимальная
величина нагрузки, на которую допустимо
нагружать такую схему составляет
и является справочным параметром.
Для уменьшения напряжения дрейфа используют схемы установки нулевого уровня. Вариант такой схемы для инвертирующего включения ОУ приведена на рис. 16.3.
Рис.16.3. Принципиальная схема инвертирующего включения ОУ с установкой нулевого уровня