
- •Методы исследования природных объектов
- •1.4. Космические методы……………………………………….. 32
- •1.4.1. Космическая фотографическая съемка…………….. 34
- •1.4.8. Методы дешифрирования……………………………… 44
- •Введение
- •Окружающая среда (условия)
- •1. Дистанционные методы исследования природных объектов
- •1.1. Аэростатная съемка
- •1.2. Аэросъемка
- •1.2.1. Природные условия аэросъемки
- •Природные факторы, определяющие условия аэросъемки
- •1.2.2. Виды аэросъемок и аэросъемочные материалы
- •1.2.3. Первичные летно-съемочные материалы
- •1.2.4. Средства и материалы аэросъемок
- •1.2.5. Технические средства визуально-инструментального дешифрирования
- •1.2.6. Дешифровочные признаки
- •1.2.7. Основные этапы детального дешифрирования
- •1.3. Аэрогеофизические методы
- •1.3.1. Радиолокационная (радарная) аэросъёмка
- •Методы исследования природных объектов
- •1.3.2. Тепловизионный дистанционный диагностический метод
- •1.3.3. Тепловая инфракрасная съемка
- •1.4. Космические методы
- •1.4.1. Космическая фотографическая съемка
- •1.4.2. Телевизионная космическая съемка
- •1.4.3. Сканерная съемка
- •1.4.4. Инфракрасная съемка
- •1.4.5. Радиолокационная съемка
- •1.4.6. Лазерная (лидарная) съемка
- •1.4.7. Виды материалов космических съемок по уровням генерализации
- •1.4.8. Методы дешифрирования
- •1.5. Области применения аэрокосмических методов.
- •2. Наземные геофизические методы
- •2.1. Общие принципы геофизических методов
- •2.2. Классификация геофизических методов
- •2.3. Геофизические исследования скважин
- •2.4. Приповерхностная электрометрия болот
- •2.5. Метод звуковой геолокации
- •2.5.1. Звуколокационная аппаратура
- •2.5.2. Дешифровочные признаки
- •Песок суглинок, глина а б в
- •Ил на песке сапропель
- •2.5.3. Палеоструктурный анализ озерных впадин по материалам звуковой геолокации
- •3. Геохимические методы
- •3.1. Ореолы рассеяния
- •Ореол рассеяния
- •3.2. Краткая характеристика геохимических методов
- •Рудные тела
- •Молекулы
- •4. Биолокационный метод
- •4.1. Средства биолокационного эффекта
- •4.2. Методика работ с биолокационными рамками
- •4.3. Поиск и выявление геопатогенных зон
- •5. Методы геохронологии
- •5.1. Относительный возраст горных пород и методы его определения
- •5.2. Статистические палеонтологические методы
- •5.3. Эволюционные палеонтологические методы
- •5.4. Относительный возраст магматических и метаморфических горных пород
- •5.5. Абсолютный возраст горных пород и методы его определения
- •6. Геотехнические методы
- •6.1. Бурение скважин
- •6.2. Понятие о буровой скважине и ее элементах.
- •6.3. Сущность и схема процесса бурения скважин
- •6.4. Бурение скважин на море
- •6.5. Область применения буровых работ
- •6.6. Механическое зондирование и опробование залежного слоя болот
- •7. Геоботанический метод
- •8. Метод геокартирования
- •Методы изучения земных недр
- •8.1. Типы и виды геологических карт
- •9. Палеоботанический метод изучения болот
- •9.1. Ботанический анализ торфяных отложений
- •Принцип образования торфяной залежи
- •9.2. Методика проведения ботанического анализа
- •Библиографический список
- •4. Гост 28245-89 Торф. Методы определения ботанического состава и степени разложения
- •Библиографический список
- •170026, Г.Тверь, наб. Афанасия Никитина, 22
1.4.5. Радиолокационная съемка
Используется в условиях, когда непосредственное наблюдение поверхности затруднено природными условиями – плотной облачностью, туманом и т.д. Съемка может проводится ночью. При радиолокационной съемке (РЛС) обычно используют радиолокаторы бокового обзора, установленные на искусственных спутниках Земли. Радиолокационная съемка осуществляется в радиодиапазоне электромагнитного спектра (сантиметровые длины волн). РЛС бокового обзора излучает узконаправленный короткий радиоимпульс в направлении, перпендикулярном движению космического носителя под некоторым углом к нормали. Разрешение РЛС бокового обзора тем больше, чем больше раскрыв антены и ее длина. Отраженный от объекта сигнал принимается той же антеной и после усиления и обработки подается на фоторегистратор. Положение элемента изображения строки определяется временем пробега радиолокационного импульса от РЛС до объекта и обратно. На этом принципе основано построение строки изображения. Кадр разворачивается за счет движения спутника. О свойствах объектов судят по мощности и структуре отраженного сигнала. Объекты частично поглощают, частично пропускают, частично отражают и рассеивают падающие на них радиоволны, в соотношениях определяемых диэлектрическими свойствами материалов самих объектов. На снимках объекты, имеющие светлые тона, обладают большим коэффициентом эффективного поверхностного рассеивания, чем объекты с темным фототоном. Радиолокационное зондирование в СВЧ-диапазоне обладает рядом уникальных возможностей, недоступных для приборов зондирования в видимом и ИК диапазонах. Самым главным достоинством является возможность обследования поверхностных образований. Это свойство обусловлено частичной прозрачностью большинства природных объектов в СВЧ-диапазоне. Глубина проникновения радиолокационного луча определяется потерями, связанными с поглощением и рассеянием электромагнитного излучения. Например, для сухого песка или почвы глубина проникновения может составить несколько метров. Глубина проникновения радиолокационного импульса в грунт сильно зависит от объемного содержания в нем воды, причем с увеличением ее содержания глубина проникновения экспотенциально падает. Особенно хорошо фиксируется на радиолокационных снимках гидросеть. Она дешифрируется лучше, чем на фотографических снимках. Высокое разрешение характерно и для районов, покрытых густой растительностью. Разрешающая способность снимков – от 10 до 200 м.
1.4.6. Лазерная (лидарная) съемка
Лидары – зондирующие устройства, состоящие из импульсного источника излучения (лазера) и высокочастотного приемного устройства. Съемка применяется для выявления и количественной характеристики содержаний различных химических элементов или их соединений в приповерхностном слое атмосферы. Посланный лазером импульс возвращается на борт космоносителя в виде эхосигнала, характеристика которого зависит от состава и концентрации определенных веществ в исследуемом слое атмосферы. В схеме работы лидаров могут использоваться резонансное и комбинационное рассеяние, резонансное поглощение. Например, при использовании метода резонансного рассеяния, приемное спектральное устройство лидара настраивают на одну из полос поглощения элемента, входящего в состав полезного ископаемого (например меди или цинка). Луч лазера вызывает флюоресценцию приповерхностных слоев воздуха, что позволяет определить присутствие элемента.