
- •Двигатели внутреннего сгорания
- •Часть II
- •Содержание
- •1. Кривошипно-шатунный механизм
- •Общие сведения и классификация
- •Конструкция кривошипно-шатунного механизма
- •1.2.1. Остов двигателя
- •1.2.2. Поршневая группа
- •Шатунная группа
- •1.2.4. Коленчатый вал и маховик
- •Кинематика кривошипно-шатунного механизма
- •Динамика кривошипно-шатунного механизма
- •1.4.1. Приведение масс движущихся деталей кривошипно-шатунного механизма
- •1.4.2. Силы инерции кривошипно-шатунного механизма и силы давления газов
- •Силы, действующие на поршневой палец, шатунные и коренные шейки
- •1.5. Уравновешивание двигателей внутреннего сгорания
- •1.5.1. Уравновешивание одноцилиндрового двигателя
- •1.5.2. Уравновешивание четырехцилиндрового однорядного двигателя
- •1.5.3. Уравновешивание двухцилиндрового V-образного двигателя
- •1.5.4. Уравновешивание восьмицилиндрового V-образного двигателя
- •Равномерность хода и расчет маховика двигателя
- •1.6.1. Общие положения
- •1.6.2. Расчет маховика
- •2. Газораспределительный механизм
- •2.1. Классификация и конструктивный обзор газораспределительных механизмов
- •2.1.1. Расположение клапанов
- •2.1.2. Привод к распределительному валу
- •2.2. Элементы механизма газораспределения
- •Система охлаждения двигателя
- •3.1. Классификация систем охлаждения
- •3.2. Жидкостная система охлаждения
- •3.2.1. Элементы жидкостной системы
- •3.2.2. Основы расчета жидкостной системы охлаждения
- •3.3. Воздушная система охлаждения
- •4. Система смазки двигателя
- •4.1. Классификация и устройство систем смазки
- •4.2. Механизмы и аппараты системы смазки
- •4.3. Основы расчета системы смазки двигателей
- •4.3.1. Расчет масляного насоса
- •4.3.2. Расчет масляного радиатора
- •5. Система питания бензиновых и газовых двигателей
- •5.1. Система питания карбюраторного двигателя
- •5.1.1. Устройство элементарного карбюратора
- •5.1.2. Основы теории карбюрации
- •5.1.3. Влияние состава горючей смеси на работу двигателя
- •5.1.4. Характеристика желаемого карбюратора
- •5.1.5. Характеристика элементарного карбюратора
- •5.1.6. Главное дозирующее устройство
- •5.1.7. Дополнительные дозирующие устройства
- •5.1.8. Определение основных размеров карбюратора
- •5.2. Система питания двигателя с впрыском бензина
- •5.3. Система питания газовых двигателей
- •6. Система питания дизельных двигателей
- •6.1. Схемы системы питания дизельных двигателей
- •6.2. Распыливание топлива в цилиндре дизельного двигателя
- •6.3. Камеры сгорания дизельных двигателей
- •6.4. Основные приборы системы питания
- •6.5. Определение основных размеров секции тнвд и форсунки
- •7. Система пуска двигателей
- •7.1. Способы пуска двигателей
- •7.2. Параметры пускового устройства
- •8. Система зажигания
- •8.1. Устройство и основы теории батарейного зажигания
- •8.2. Зажигание от магнето
- •8.3. Электронные системы зажигания
- •9. Система регулирования двигателей внутреннего сгорания
- •9.1. Теоретические основы регулирования скоростных режимов двигателей
- •9.2. Классификация и конструкции регуляторов
- •10. Двигатели внутреннего сгорания
- •10.1. Вредные выбросы в составе отработавших газов и их воздействие на живую природу
- •10.2. Законодательные ограничения выбросов вредных веществ
- •10.3. Альтернативные топлива
- •10.4. Совершенствование систем питания и зажигания
- •10.5. Нейтрализация
- •Список литературы
1.5.4. Уравновешивание восьмицилиндрового V-образного двигателя
В восьмицилиндровых четырехтактных двигателях с углом между рядами цилиндров 90° применяют коленчатые валы с четырьмя кривошипами, расположенными в двух взаимно-перпендикулярных плоскостях (рис. 1.35). При уравновешивании условно рассматривают такие двигатели, как соединение четырех двухцилиндровых V-образных двигателей, последовательно установленных по оси коленчатого вала.
Неуравновешенные силы по парам цилиндров составляют:
первая
пара
,
,
;
вторая
пара
,
,
;
третья
пара
,
,
;
четвертая
пара
,
,
.
Рис. 1.35. Уравновешивание V-образного восьмицилиндрового двигателя
Силы инерции первого и второго порядков, центробежная сила и момент сил инерции второго порядка уравновешены, т. е.
,
,
,
.
Результирующий момент сил инерции первого порядка и центробежных сил составляет:
,
где
–
горизонтальная составляющая результирующего
момента;
–
вертикальная
составляющая результирующего момента.
Тогда
.
Плоскость, в которой действует суммарный момент и должны быть установлены противовесы, составляет с плоскостью первого колена угол 18° 30'.
Моменты сил инерции первого порядка и центробежных сил обычно уравновешивают противовесами, установленными на щеках коленчатого вала. Продольный момент от сил инерции первого порядка может быть уравновешен установкой противовесов на концах коленчатого вала. Массу каждого противовеса, размещаемого на концах вала, определяют из уравнения:
,
где а – расстояние между соседними плоскостями, в которых располагаются оси цилиндров.
Из уравнения масса противовесов равна:
.
На практике часто устанавливают противовесы на щеках кривошипа и на концах коленчатого вала (двигатели ЯМЗ-236, ЯМЗ-238, ЗИЛ-131 и др.).
Действительная уравновешенность двигателя отличается от рассмотренной теоретической уравновешенности, при которой предполагается, что коленчатый вал абсолютно жесткий, вращается с постоянной угловой скоростью, а детали в различных цилиндрах имеют одинаковые размеры и массу. В действительности размеры и масса деталей двигателя различны и силы инерции для отдельных цилиндров получаются неравными.
Для максимального уменьшения влияния вредных факторов на уравновешенность двигателя вращательно движущиеся части тщательно балансируют, а части, движущиеся возвратно-поступательно, подбирают с минимальными отклонениями по размерам и массе. Строго контролируют распределение масс шатуна. Коленчатые валы и маховики подвергают статической и динамической балансировке. Несоблюдение технических условий на сборку деталей двигателя может привести к возникновению значительных неуравновешенных сил инерции.
Равномерность хода и расчет маховика двигателя
1.6.1. Общие положения
В идеальном двигателе угловая скорость вращения коленчатого вала ? считается постоянной.
В реальном двигателе даже при установившемся режиме работы угловая скорость ω не остается постоянной, а колеблется в течение одного цикла. Это объясняется изменением величины крутящего момента двигателя Мк, от которого и зависит в первую очередь равномерность хода двигателя.
График изменения постоянного по индикаторной диаграмме крутящего момента одноцилиндрового четырехтактного двигателя по углу поворота коленчатого вала представлен на рис. 1.36. Площади, расположенные над осью абсцисс (F2, F5, F7), представляют положительную работу, расположенные же под этой осью (F1, F3, F4, F6) – отрицательную.
Рис. 1.36. График крутящего момента одноцилиндрового четырехтактного двигателя
Разность между положительными и отрицательными площадями представляет работу крутящего момента за рабочий цикл двигателя:
Fизб = (F2 + F5 + F7) – (F1 + F3 + F4 + F6).
Среднее значение крутящего момента, которое может быть найдено при помощи диаграммы (рис. 1.36):
,
,
где АВ – длина отрезка в единицах длины,
а1 – масштаб моментов.
На рис. 1.36 работа среднего крутящего момента представлена в масштабе площадью прямоугольника, высота которого равна АВ.
Зная величину Мср, неравномерность крутящего момента можно определить по коэффициенту К, который называется степенью неравномерности крутящего момента:
,
где Мmax – максимальное значение крутящего момента за рабочий цикл двигателя.
В некоторых случаях для оценки равномерности изменения крутящего момента пользуются коэффициентом неравномерности крутящего момента
,
где Мmin – минимальное значение крутящего момента за рабочий цикл двигателя.
С увеличением числа цилиндров коэффициенты К и K1 уменьшаются. Примерная зависимость величины К от числа цилиндров i для четырехтактных бензиновых двигателей при полной нагрузке приведена в табл. 1.5.
Таблица 1.5
Значения К от числа цилиндров
Число цилиндров |
||||||||
1 |
2 |
3 |
4 |
6 |
V6 90/120 |
8 |
V8 90/90 |
V12 |
7.74 |
5.52 |
3.62 |
3.35 |
2.25 |
2.88 |
1.36 |
1.36 |
1.16 |
Степень неравномерности вращения коленчатого вала двигателя можно оценить коэффициентом неравномерности хода двигателя:
,
где ωmax, ωmin, ωcp – величины наибольшей, наименьшей и средней угловой скорости вращения коленчатого вала в течение одного рабочего цикла двигателя при установившемся режиме его работы.
Для
автомобильных и тракторных двигателей
при номинальных оборотах значения
.
Для одноцилиндрового двигателя необходимая равномерность хода двигателя может быть обеспечена лишь при наличии маховика значительных размеров, что отрицательно отражается на приемистости двигателя. Теоретические и экспериментальные данные показывают, что на работу двигателя автомобиля и трактора в целом равномерность работы оказывает большее влияние, чем уравновешенность. С увеличением равномерности крутящего момента условия работы двигателя и механизмов автомобиля и трактора заметно улучшаются.