Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
37-42.doc
Скачиваний:
2
Добавлен:
27.11.2019
Размер:
75.26 Кб
Скачать
  1. Критерии акустического качества зала.

Акустическое качество залов с фокусированием большей частью является неудовлетворительным из-за возможного образования эха ( в больших залах), неравномерного распределения отраженной звуковой энергии и, наконец, из-за нарушения необходимого соотношения между прямой и отраженной звуковой энергией.

Как критерий акустического качества залов наиболее часто используется запаздывание прихода первого отражения по сравнению с прямым звуком, к-рое не должно превышать 0 02 - 0 03 с. При разнице во времени прихода прямого и отраженного сигналов более 0 05 с человек воспринимает отраженный звук как эхо.

Очень большое влияние на акустические качества залов оказывает выбор высоты потолка. При большой высоте первые отражения звуковой энергии могут не поступить в партерную часть зрительного зала. Кроме того, увеличивается объем зала, который для драматических театров должен определяться из условия удельного объема 4 - 4 5 м3 на одного зрителя. Поэтому высота потолка обычно не должна превышать 10 м, что обеспечивает приход отраженных звуковых волн по всей площади зала за время, меньшее 0 05 с.

Очень большое влияние на акустические качества залов оказывает выбор высоты потолка. При большой высоте первые отражения звуковой энергии могут не поступить в партерную часть зрительного зала.

  1. Что такое реверберация?

Любое звуковое поле как элемент колеблющейся среды обладает собственной характеристикой затухания звука – реверберацией ("послезвучание").

Сущность эффекта реверберации Реверберация сопровождает любой звук, возникший в естественной акустической среде. Возникает она при отражении звуковой волны от каких-либо препятствий и ее возврата в точку прослушивания. Поэтому, в восприятии акустического звука присутствует его прямой источник и многочисленные отражения от ближайших поверхностей — преград.: Часто к ранним отражениям причисляют вторичные приходящие отзвуки, отстающие от исходного прямого сигнала не более чем на 60 мс. Эффект реверберации проявляется в более сочном гулком объемном звучании, обычно более приятном для восприятия, чем исходный «сухой» звук. В аудиозаписи реверберация придает чувство глубины пространства. Источник звуков с более выраженным эффектом реверберации субъективно ощущается расположенным в отдалении от слушателя. Реверберация воспринимается слитно, если промежутки между отраженными сигналами менее 100 мс. При увеличении интервала между приходящими звуками свыше 100 мс субъективное восприятие человека отмечает уже раздельное эхо. Чем больше размеры помещения и меньше поглощающая способность поверхностей, тем больше длительность реверберации. Под временем реверберации понимают длительность затухания сигнала на 60 дБ от первоначального значения. По времени реверберации и ее глубине в естественной звуковой среде можно оценить размеры помещения и его акустические свойства. Звук голоса на сцене концертного зала, в пустой комнате, в комнате с множеством мягких вещей заметно отличается по воспринимаемому тембру. В процессе естественной реверберации меняется частотный спектр звука. Высокие частоты затухают быстрее, чем низкие, поэтому тембр отраженного звука в сравнении с оригиналом имеет более мягкий, приглушенный характер. Величина потери высокочастотных составляющих спектра зависит от расстояния, пройденного акустической волной, и от свойств материалов отражающих поверхностей.

  1. Какое звуковое поле называется диффузным?

Звуковое поле, в котором возникает большое количество отраженных волн с различными направлениями, в результате чего удельная плотность звуковой энергии одинакова по всему полю, называется диффузным полем.

  1. Направленные отражения,

Поверхности, дающие направленные отражения, следует проектировать таким образом, чтобы условия применимости геометрических отражений выполнялись, по крайней мере, для частот, превышающих 300-400 Гц (то есть для звуковых волн длиной примерно 1 м и менее), так как эти частоты важны для разборчивости речи. Таким образом, для расчета можно принимать l = 1 м. Если указанные условия выполнены, то построение геометрических отражений допустимо не только от центра отражателя но и от других точек его поверхности, удаленных от краев отражателя не менее чем в половину длины волны l. При заданном требовании l £1 м это означает, что точки геометрического отражения должны браться не ближе 0,5 м от краев отражающей поверхности.

При построении геометрических отражений от плоскости удобен прием, показанный на рис. 11 а. Здесь используется мнимый источник Q1, симметричный с действительным точечным источником Q по отношению к отражающей плоскости и находящийся по другую ее сторону. Для построения мнимого источника надо опустить из точки Q перпендикуляр QA на отражающую плоскость и на продолжении его отложить отрезок AQ1, равный отрезку QA . Прямые, проведенные из мнимого источника Q1, после пересечения ими отражающей плоскости удовлетворяют условию равенства углов падения и отражения, то есть являются искомыми отраженными лучами, создаваемыми действительным источником Q.

Метод мнимых источников применим и при построении отражений от кривых поверхностей. Если требуется найти отражение от какой-либо точки O кривой поверхности С (см. рис. 11 б) при заданном положении источника Q, то следует в точке O построить касательную плоскость Т к поверхности. Мнимым источником в этом случае является точка Q1, симметричная источнику Q относительно касательной плоскости; продолжение ОМ прямой Q1O после пересечения ее с поверхностью С является искомым отраженным лучом. Здесь для каждой точки O отражающей поверхности приходится находить свой мнимый источник Q1 в отличие от ранее рассмотренного случая (см. рис. II,а), у которой для отражения от любой ее точки мнимый источник один и тот же (при заданном положении источника Q). Суммарная длина QO + ОМ лучей QO и ОМ, дающая длину полного хода отраженного звука от источника Q до некотрой точки приема М, равна расстоянию Q1M от мнимого источника Q1 до точки М (см. рис. 11а, 11б). При этом, разумеется, следует брать истинные длины указанных отрезков, а не их проекций.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]