
- •Isbn 5-02-006396-7
- •Глава 1. Процессы переработки нефти ...................................................... 26
- •Глава 2. Процессы переработки угля и газа ............................................ 60
- •Глава 3. Олефиновые мономеры ................................................................ 81
- •Глава 4. Диеновые мономеры .................................................................... 118
- •Глава 5. Галогенсодержащие мономеры ................................................. 171
- •Глава 6. Виниловые мономеры с ароматическими и гетероцикли- ческими заместителями .............................................................. 212
- •Глава 7. Акриловые мономеры ................................................................ 241
- •Глава 8. Спирты и виниловые эфиры ...................................................... 283
- •Глава 9. Мономеры для простых полиэфиров ....................................... 313
- •Глава 10. Мономеры для сложных полиэфиров .................................... 346
- •Глава 11. Мономеры для полиамидов....................................................... 399
- •Глава 12. Мономеры для полиимидов...................................................... 470
- •Глава 13. Мономеры для полиуретанов................................................... 496
- •Глава 14. Мономеры для поликарбонатов…………………… 531
- •Глава 15. Мономеры для феноло- и амино-альдегидных полимеров 569
- •Глава 16. Кремнийорганические мономеры ........................................ 596
- •Глава 17. Другие металлсодержащие и неорганические мономеры 642 17.1. Мономеры для серосодержащих полимеров ...................................... 642
- •Глава 1
- •1.1. Термодеструктивные процессы
- •1.1.1. Атмосферно-вакуумная перегонка нефти
- •1.1.2. Висбрекинг
- •1.1.3. Термический крекинг
- •1.1.4. Термоконтактный крекинг
- •1.1.5. Пиролиз нефтяного сырья
- •1.1.6. Коксование
- •1.2. Каталитические процессы
- •1.2.1. Каталитический крекинг
- •1.2.2. Каталитический риформинг
- •1.2.3. Гидрокрекинг
- •1.2.4. Алкилирование
- •1.2.5. Изомеризация алканов
- •1.3. Структура современного
- •Глава 2
- •2.1 . Газификация угля
- •2.1.1. Автотермические процессы
- •2.1.2. Газификация в "кипящем слое"
- •2.1.3. Гидрогенизация угля
- •2.2. Переработка природных и попутных газов и
- •2.2.1. Переработка природных газов
- •2.2.2. Переработка газового конденсата
- •2.3. Химические основы производства водорода
- •2.3.1. Каталитическая конверсия углеводородов
- •2.3.2. Каталитическая конверсия оксида углерода
- •2.3.3. Общие сведения о технологии получения водорода
- •Глава 3
- •3.1. Низшие олефины
- •3.1.1. Сырье для производства низших олефинов
- •3.1.2. Получение этилена
- •3.1.3. Получение пропилена
- •3.1.4. Получение бутена-1
- •3.1.5. Получение изобутилена
- •3.2. Высшие олефины
- •3.2.1. Получение высших олефинов димеризацией и
- •3.2.2. Диспропорционирование олефинов
- •3.2.3. Димеризация и диспропорционирование
- •3.2.4. Получение высших олефинов из синтез-газа
- •3.2.5. Получение циклоолефинов
- •Глава 4
- •4.1. Бутадиен-1,3
- •4.1.1. Способ с.В. Лебедева
- •4.1.2. Способ и.И. Остромысленского
- •4.1.3. Получение бутадиена из ацетилена
- •4.1.4. Промышленные способы получения бутадиена
- •4.2. Изопрен
- •4.2.1. Двухстадийное получение изопрена из
- •4.2.2. Получение изопрена из изобутилена и формальдегида
- •4.2.3. Получение изопрена из изобутилена и метилаля
- •4.2.4. Получение изопрена дегидрированием углеводородов с
- •4.2.5. Получение изопрена из пропилена
- •4.2.6. Получение изопрена из ацетилена и ацетона
- •4.2.7. Получение изопрена жидкофазным окислением углеводородов
- •4.2.8. Получение изопрена из бутенов-2 и синтез-газа
- •4.3. Диеновые мономеры для получения
- •4.3.2. Получение производных норборнена
- •Глава 5
- •5.1. Хлоросодержащие мономеры
- •5.1.1. Теоретические основы процессов хлорирования углеводородов
- •5.1.2. Окислительное хлорирование
- •5.1.3.Гидрохлорирование
- •5.1.4. Дегидрохлорирование
- •5.1.5. Производство хлорорганических продуктов
- •5.1.6. Получение винилхлорида
- •5.1.7.Получение винилиденхлорида
- •5.1.8. Получение хлоропрена
- •5.1.9. Получение эпихлоргидрина
- •5.2. Фторсодержащие мономеры
- •5.2.1. Теоретические основы процессов фторирования
- •5.2.2. Механизм реакций фторирования
- •5.2.3. Способы фторирования алканов
- •5.2.4. Фторирующие агенты
- •5.2.5. Получение винилфторида
- •5.2.6. Получение винилиденфторида
- •5.2.7. Получение перфторпроизводных углеводородов
- •5.2.8. Получение других фторпроизводных углеводородов
- •5.2.9. Получение хладонов (фреонов)
- •Глава 6 виниловые мономеры с ароматическими и гетероциклическими заместителями
- •6.1. Стирол и его производные
- •6.1.1. Получение стирола Препаративные методы синтеза стирола
- •Промышленные методы синтеза стирола
- •6.1.2. Получение -метилстирола
- •6.2. Винилпиридины
- •6.2.1. Общая характеристика основных способов получения винилпиридинов
- •6.2.2. Промышленные методы получения винилпиридинов Синтез 5-винил-2-метилпиридина
- •Синтез 2- и 4-винилпиридинов и 2-винил-5-этилпиридина
- •6.3.1. Прямое винилирование -пирролидона ацетиленом
- •6.3.2 Косвенное винилирование -пирролидона
- •6.4.1. Получение n-винилкарбазола по реакции винилирования ацетиленом
- •6.4.2. Получение n-винилкарбазола по реакции винилового обмена
- •6.4.3. Получение 9-винилкарбазолов многостадийными методами
- •Разложение n-(2-гидроксиэтил)карбазола
- •Разложение 1-замещенных n-этилкарбазолов
- •6.5. Другие виниловые мономеры
- •6.5.1. Получение этилиденнорборнена
- •6.5.2. Получение винилтолуола
- •6.5.3. Получение винилкетонов
- •Синтез винилметилкетона
- •Синтез изопропенилметилкетона
- •Синтез винилфенилкетона
- •Синтез виниленкарбоната
- •Глава 7
- •7. 1. Акрилонитрил
- •7.1.1.Получение акрилонитрила через этиленоксид и этиленциангидрин
- •7.1.2.Окислительный аммонолиз пропилена
- •7.1.3.Получение акрилонитрила из ацетилена и синильной кислоты
- •7.1.4.Получение акрилонитрила через ацетальдегид и гидроксинитрил
- •7.2.1. Препаративные методы получения акриламида
- •7.2.2. Промышленные методы получения акриламида
- •7.3 Акриловая кислота
- •7.3.1.Гидролиз акрилонитрила
- •7.3.2.Гидрокарбоксилирование ацетилена
- •7.3.3. Парофазное окисление пропилена
- •7.3.4. Гидролиз этиленциангидрина
- •7.3.5. Гидролиз -пропиолактона
- •7.3.6. Окислительное карбонилирование этилена
- •7.4. Метакриловая кислота
- •7.4.1. Газофазное окисление изобутилена
- •7.4.2. Окисление метакролеина
- •7.4.3. Газофазное окисление метакролеина
- •7.5. Акрилаты
- •7.5.1. Получение акрилатов этерификацией акриловой метакриловой кислот
- •7.5.2. Получение акрилатов переэтерификацией
- •7.5.3. Получение акрилатов из этиленциангидрина
- •7.5.4. Получение акрилатов из ацетилена по реакции Реппе
- •7.5.5. Получение акрилатов из кетена и формальдегида
- •7.5.6. Получение акрилатов из акрилонитрила
- •7.6. Метакрилаты
- •7.6.1. Получение метилметакрилата из ацетона и циангидрина
- •7.6.2. Получение метилметакрилата из трет-бутилового спирта
- •7.6.3. Получение метилметакрилата из изобутилена
- •7.6.4. Новые методы получения метилметакрилата
- •7.6.5. Получение других алкилметакрилатов
- •7.7.Олигоэфиракрилаты
- •Глава 8
- •8.1. Поливиниловый и аллиловый спирты
- •8.2. Основы процессов винилирования
- •8.3. Простые виниловые эфиры
- •8.3.1. Получение простых виниловых эфиров
- •8.3.2. Другие методы получения простых виниловых эфиров
- •8.4. Сложные виниловые эфиры. Винилацетат
- •8.5. Производные поливилового спирта –
- •Глава 9
- •9.1. Формальдегид
- •9.1.1 Механизм и катализаторы
- •9.1.2. Получение формальдегида
- •9.2. Этиленоксид
- •9.2.1. Получение этиленоксида через этиленхлоргидрин
- •9.2.2. Прямое окисление этилена
- •9.3. Пропиленоксид
- •9.3.1. Получение пропиленоксида
- •9.3.2. Получение пропиленоксида окислением пропилена через пропиленхлоргидрин
- •9.4. Фениленоксид
- •9.5. Аллилглицидиловый эфир
- •9.6. Эпихлоргидрин
- •9.6.1. Получение эпихлоргидрина из глицерина
- •9.6.2. Получение эпихлоргидрина из аллилхлорида
- •9.7. Сульфоны
- •Глава 10 мономеры для сложных полиэфиров
- •10.1. Терефталевая кислота и диметилтерефталат
- •10.1.1. Процесс фирмы "Дюпон"
- •10.1.2. Процесс фирмы "Виттен"
- •10.1.3. Процесс фирмы "Aмoкo"
- •Промежуточные и побочные продукты окисления п-ксилола до терефталевой кислоты
- •Технология получения терефталевой кислоты
- •10.1.4. Одностадийный процесс внипим
- •10.1.5. Получение ароматических и гетероциклических карбоновых кислот путем термического превращения их щелочных солей
- •Превращения щелочных солей
- •10.1.6 Процесс фирмы "Мицубиси"
- •10.1.7. Получение терефталевой кислоты из угля
- •10.2. Малеиновый ангидрид
- •10.2.1 . Получение малеинового ангидрида окислением бензола в газовой фазе
- •10.2.2 . Получение малеинового ангидрида окислением бутана
- •10.2.3. Получение малеинового ангидрида окислением н-бутенов
- •10.2.4. Выделение малеинового ангидрида как побочного продукта в производстве фталевого ангидрида
- •10.3. Фталевый ангидрид
- •10.3.1. Парофазное окисление о-ксилола или нафталина
- •10.3.2. Жидкофазное окисление о-ксилола или нафталина
- •10.3.3. Процесс внииос
- •10.4. Фумаровая кислота
- •10.5. Дихлормалеиновая и дихлормуровая кислоты
- •10.5.1. Получение дихлормалеиновой кислоты и ее ангидрида
- •10.5.2. Получение дихлорфумаровой кислоты и ее ангидрида
- •10. 6. Нафталин-2,6-дикарбоновая кислота
- •10.7. Тиофен-2,5-дикарбоновая кислота
- •10.8. Азелаиновая кислота
- •10.9. Диолы
- •10.9.1. Получение этиленгликоля
- •10.9.2. Получение пропандиола-1,2
- •10.9.3. Получение бутандиола-1,4
- •Синтез бутандиола-1,4 на основе возобновляемого сырья (процесс фирмы "Квакер Оатс")
- •10.9.4. Получение 1,4-дигидроксиметилциклогексана
- •Глава 11
- •11.1. Мономеры для полиамидов, получаемых полимеризацией
- •11.1.1. Получение капролактама Методы синтеза капролактама
- •Капролактоновый процесс фирмы "Юнион Карбайд"
- •Нитроциклогексановый процесс фирмы "Дюпон"
- •Процесс фирмы «Байер»
- •Процесс фирмы "сниа Вискоза".
- •Основные стадии синтеза капролактама
- •Синтез капролактама из толуола
- •Фотохимический синтез капролактама
- •11.1.2. Получение валеролактама
- •11.1.3. Получение 7-аминогептановой кислоты
- •11.1.4. Получение каприлолактама
- •11.1.5. Получение 9-аминононановой кислоты
- •11.1.6. Получение 11-аминоундекановой кислоты
- •11.1.7. Получение лауролактама
- •Тримеризация бутадиена
- •Процесс фирмы "Хемише Халс"
- •Процесс фирмы "Убе"
- •11.1.8. Получение α-пирролидона
- •Восстановительное аминирование малеинового ангидрида
- •11.2. Мономеры для полиамидов, получаемых поликонденсацией дикарбоновых кислот и диаминов
- •11.2.1. Получение адипиновой кислоты
- •Синтез адипиновой кислоты из циклогексана
- •Синтез адипиновой кислоты из тетрагидрофурана
- •Синтез адипиновой кислоты из фенола
- •Другие промышленные методы синтезы адипиновой кислоты
- •11.2.2. Получение адиподинитрила
- •Синтез адиподинитрила из адипиновой кислоты
- •Синтез адиподинитрила из бутадиена
- •Синтез адиподинитрила из акрилонитрила электрохимическим методом
- •Каталитическая димеризация акрилонитрила
- •11.2.3. Получение гексаметилендиамина
- •Синтез гексаметилендиамина из адипиновой кислоты
- •Синтез гексаметилендиамина через гександиол-1,6
- •Синтез гексаметилендиамина из бутадиена
- •Димеризация акрилонитрила
- •11.2.4. Получение других мономеров для синтеза полиамидов
- •11.2.5. Получение м-ксилилендиамина
- •Бромирование м-ксилола
- •Окислительный аммонолиз
- •11.3.2. Получение волокнообразующих полиамидов на основе декандикарбоновой кислоты и 4,4-диаминодициклогексилметана
- •Синтез декандикарбоновой кислоты
- •11.4. Мономеры для полностью ароматических полиамидов
- •11.4.1. Получение хлорангидридов ароматических кислот
- •Синтез хлорангидриродов из ксилолов
- •Тионильный метод
- •11.4.2. Получение мономеров для волоконообразующих полиамидов поликонденсацией 4,4-диаминодифенилсульфона
- •11.4.3. Получение 2,5-бис(n-аминофенил)-1,3,4-оксадиазола
- •11.4.4. Получение 5,5'-Бис(м-аминофенил)-2,2'-бис(1,3,4-оксадиазолил)
- •11.4.5. Получение 4,4'-бис(п-аминофенил)-2,2-битиазола
- •11.4.6. Получение бис(м-аминофенил)тиазоло(5,4-d)тиазола
- •11.4.7. Получение мономеров для полиамидов на основе пиперазина и двухосновных кислот Синтез пиперазина
- •Глава 12
- •12.1. Пиромеллитовый диангидрид
- •12.1.1. Получение дурола
- •12.1.2.Получение пиромеллитового диангидрида
- •12.2. Диангидриды дифенилтетракарбоновых кислот
- •12.2.1. Получение диангидрида дифенил-2,2',3,3'-тетракарбоновой кислоты
- •12.2.2. Получение диангидрида дифенил-2,3,5,6-тетракарбоновой
- •12.2.3. Получение
- •12.2.4. Получение
- •12.3. Диангидриды нафталинтетракарбоновых кислот
- •12.3.1. Получение
- •12.3.2. Получение диангидрида нафталин-2,3,6,7-тетракарбоновой
- •12.4. Диангидриды бензофенон- и
- •12.4.1. Получение
- •12.4.2. Получение диангидрида перилен-3,4,9,10-тетракарбоновой кислоты
- •12.5. Ароматические диамины
- •12.5.1. Получение о- и м-фенилендиаминов
- •12.5.2. Получение n-фенилендиамина
- •12.5.3. Получение бензидина
- •12.6. Производные анилина
- •12.6.1 Получение анилинфталеина
- •12.6.2. Получение анилинфлуорена
- •12.6.3. Получение анилинантрона
- •Глава 13
- •13.1. Диамины
- •13.1.1. Получение диаминов восстановлением динитрилов
- •13.1.2. Получение диаминов
- •13.2. Диизоцианаты и изоцианаты
- •13.2.1. Фосгенирование аминов
- •13.2.2. Перегруппировки Курциуса, Гофмана и Лоссена
- •13.2.3. Получение толуилендиизоцианатов
- •13.2.5. Получение других диизоцианатов
- •13.2.6. Получение изоцианатов
- •13.3. Полиолы и простые полиэфиры
- •13.3.1. Получение β-диолов
- •13.3.2 Получение глицерина
- •13.3.3. Получение арилалифатические диолов
- •13.3.4. Получение мономеров для полиэфирполиолов
- •Глава 14
- •14.1. Бисфенолы
- •14.1.1. Получение бисфенола а
- •14.1.2. Получение галогензамещенных бисфенолов
- •14.2. Дифенилкарбонат
- •14.2.1. Получение дифенилкарбоната
- •14.2.2. Получение дифенилкарбоната
- •14.3. Бисфенол s
- •14.4. Резорцин
- •14.5. Циклокарбонаты
- •14.5.2. Получение циклокарбонатов
- •14.5.3. Получение циклокарбонатов на основе диолов
- •14.5.4. Получение полифункциональных циклокарбонатов
- •Глава 15
- •15.1. Мономеры для феноло-альдегидных полимеров
- •15.1.2. Получение бромфенолов и их производных – антипиренов
- •15.2. Мономеры для карбамидо-альдегидных
- •15.2.1. Получение карбамида
- •15.2.2. Получение меламина
- •Глава 16
- •16.1. Методы получения
- •16.1.1. Магнийорганический синтез
- •16.1.2. Прямой синтез
- •16.1.3. Дегидроконденсация кремнийгидридов
- •16.1.4. Конденсация кремнийгидридов
- •16.1.5 Гидросилилирование
- •16.2. Органохлорсиланы
- •16.2.1. Получение метил- и этилхлорсиланов
- •16.2.2. Получение органохлорсиланов термокаталитическим
- •16.2.3. Получение органохлорсиланов
- •16.2.4. Пиролитические способы получения органохлорсиланов
- •16.2.5. Получение кремнийорганических мономеров химическими
- •16.2.6 Получение тетрахлорсилана
- •16.2.7. Очистка диорганодихлорсиланов
- •16.3. Мономеры для силоксановых каучуков
- •16.3.1. Получение силоксановых каучуков
- •16.3.2. Получение силоксановых мономеров
- •16.3.3. Другие способы получения
- •16.4. Мономеры
- •16.4.1. Получение гексаорганоциклотрисилоксанов
- •16.4.2. Получение кремнийорганических уретанов
- •16.5. Мономеры для поликремнийуглеводородов -
- •Глава 17
- •17.1. Мономеры для серосодержащих полимеров
- •17.1.1. Получение сульфида и полисульфидов натрия
- •17.1.2. Получение 1,2-дихлорэтана
- •17.1.3. Получение n-дихлорбензола
- •17.2. Фосфазены (фосфонитрилы)
- •17.3. Борсодержащие мономеры
- •17.4. Азотсодержащие мономеры
- •17.4.1. Получение мономеров с азольными циклами
- •17.4.2. Получение ди- и тетракарбоновых кислот
- •17.4.3. Получение бензимидазолов
- •17.4.4. Получение бензоксазолов
- •17.4.5. Получение бисмалеимидов
- •17.5. Металлсодержащие мономеры и полимеры на их
- •17.5.1. Получение металлсодержащих мономеров, включающих кова-
- •17.5.2. Получение металлсодержащих мономеров ионного типа
- •17.5.3. Получение металлсодержащих мономеров,
- •17.5.4. Получение металлсодержащих мономеров π-типа
- •In the synthesis of monomers
4.2.4. Получение изопрена дегидрированием углеводородов с
5
Каталитическое дегидрирование предельных, непредельных или алкила-роматических углеводородов является основным промышленным способом производства бутадиена, изопрена и стирола. Дегидрирование может быть осуществлено двумя способами: одностадийным и двухстадийным. Двухста-дийным способом изопентан на первой стадии дегидрируется в изоамилены, которые выделяют из изопентан-изоамиленовой смеси. Далее изамилены де-гидрируют в изопрен:
изо-C5H12 изо-C5H10 + H2 ,
изо-C5H10 изо-C5H8 + H2
Одностадийный способ отличается от двухстадийного тем, что дегидри-рование изопентана и изопентан-изоамиленовых смесей проводят на одном ка-тализаторе без промежуточного разделения изопентана и изоамиленов. Важным достоинством двухстадийного способа является возможность применения на каждой стадии высокоселективных катализаторов. Однако необходимость раз-деления продуктов после каждой стадии и высокая энергоемкость значительно подрывают конкурентные способности двухстадийного способа по сравнению с одностадийным. Одностадийное дегидрирование предельных углеводородов в диены выгодно отличается от двухстадийного упрощенной технологической схемой, что обусловлено отсутствием необходимости разделения продуктов после стадий и, соответственно, более низкими капитальными затратами на тонну продукции и низкой энергоемкостью.
Двухстадийное дегидрирование изопентана в изопрен
Дегидрирование предельных углеводородов, и в частности изопентана, является последовательной обратимой эндотермической реакцией:
CnH2n+2 |
CnH2n |
CnH2n-2 |
|
|
|
При дегидрировании изопентана протекают следующие реакции: |
H3C—CH2—CH—CH3 |
CH2=C—CH2—CH3 + H2 |
CH3 |
CH3 |
|
2-Метилбутен-1 |
|
147 |
|
|
|
|
|
|
H3C—CH2—CH—CH3 |
CH2=CH—CH—CH2 + H2 |
|
CH3 |
CH3 |
|
|
3-Метилбутен-1 |
|
|
|
H3C—CH2—CH—CH3 |
CH3—C=CH—CH3 + H2 |
CH3 CH3
2-Метилбутен-2
При этом образуются три изомера изопентенов: 2-метилбутен-1, 3-метилбутен-1 и 2-метилбутен-2. Последний метилбутен (триметилэтилен) обра-зуется в количестве около 65%.
Кроме этих реакций протекает также большое число побочных реакций, причем по мере усложнения строения молекул количество побочных реакций при каталитическом дегидрировании возрастает. Наиболее важными побочны-ми реакциями являются следующие:
-
- скелетная изомеризация изопентена
изо-C5H12
н-C5H12;
- изомеризация с миграцией двойной связи в изопентенах
2-метилбутен-1 3-метилбутен-1 2-метилбутен-2;
- изомеризация с миграцией двойной связи в н-пентенах
-
H3C—CH2—CH2—C=CH2
CH=CH
CH=CH—CH3
CH3—CH2 CH3 CH3—CH2
цис-Пентен-2 транс-Пентен-2
- крекинг исходных, промежуточных и целевых продуктов;
- более глубокое дегидрирование, сопровождающееся циклизацией, аро-матизацией и образованием соединений с тройными связями;
- взаимодействие олефинов и диеновых углеводородов с водяным паром с образованием кислородсодержащих соединений;
- коксообразование.
При дегидрировании изопентана в изоамилены кроме целевого продукта образуются также легкие углеводороды С1-С4, тяжелые углеводороды С6 и вы-ше, а также СО, СО2, кокс. Получение изопрена из изопентана по сравнению с получением бутадиена из бутана осложняется тем, что при дегидрировании изопентана образуется значительно больше изомеров, чем при дегидрировании н-бутана.
|
148 |
|
|
Общие сведения о технологии дегидрирования изопентана в изопен-тены. В промышленности разработаны различные технологические варианты дегидрирования изопентана в изоамилены: дегидрирование в адиабатическом реакторе с движущимся слоем катализатора, дегидрирование в "кипящем слое" пылевидного катализатора.
Дегидрирование изопентана осуществляют обычно на алюмохромовом катализаторе, промотированном К2О. Алюмохромолитиевый, алюмохромос-винцовый и алюмохромоцинковый катализаторы обладают более низкой ак-тивностью, чем алюмохромовый катализатор, промотированный оксидом ка-лия. Принципиальная технологическая схема (рис. 4.5) дегидрирования изопен-тана в "кипящем слое" пылевидного катализатора разработана и осуществлена в полупромышленном масштабе в Научно-исследовательскоминституте мономе-ров для синтетического каучука (г. Ярославль, Россия).
Р
ис.
4.5. Принципиальная
технологическая схема дегид-
рирования изопентана в ки-
"
п
ящем
слое" пылевидного
катализатора
1
– перегревательная печь; 2 –
реактор; 3 – регенератор; 4 –
к
отел-утилизатор;
5 – электрофильтр; 6 – топка.
Потоки: I – изопентан; II –
т
опливо;
III – воздух под дав-
лением; IV – воздух для
т
ранспортировки
катализатора; V
– контактный газ; VI – паровой
конденсат; VII – пар; VIII – азот
д
ля
транспортировки ка-
тализатора
Ниже приведены
о
сновные
показатели процесса
в "кипящем слое":
Температура верха "кипящего слоя", К …….… 813- 863
Давление над "кипящим слоем", МПа …… ...…0,13-0,15
Объемная скорость сырья, нм33
/мкат.ч… ………100-180
Плотность кипящего слоя в реакторе, кг/м3 …….. 750
Суммарный выход изопрена и изопентена
на пропущенную фракцию изо-С5, % (масс.)……28-32
Суммарный выход изоамиленов и изопрена
на разложенную фракцию изо-С5, % (масс.)…… 68-71
|
149 |
|
|
Дегидрирование изопентенов в изопрен. Дегидрирование изопентенов в изопрен
изо-C5H10 изо-C5H8 + H2 + Н
является обратимой эндотермической реакцией.
Теплота реакции Н зависит от структуры исходного изоамилена: при де-гидрировании 2-метилбутена-2 она составляет 137,830 кДж/моль, 3-метил-бутена-1 – 123,513 кДж/моль, а 2-метилбутена-1 – 131,248 кДж/моль.
В табл. 4.4 приведены равновесные составы смеси при дегидрировании изоамиленов при атмосферном давлении.
Таблица 4.4. Состав равновесной смеси при дегидрировании изопентенов при ат-
мосферном давлении
-
Содержание , % (мол.)
Т, К
изо-С5Н10
изо-С5Н8 Н2
-
700
94,2
2,9
2,9
800
79,6
10,2
10,2
900
53,2
23,4
23,4
-
1000
25,2
37,4
37,4
Влияние разбавления равновесной смеси изопентенов инертным разбави-телем на равновесную глубину дегидрирования иллюстрируется следующими данными:
-
изо-С5Н10:разбавитель,
моль:моль………………. 1:0
1:1
1:3
1:5
1:7
1:10
Равновесная глубина
дегидрирования, %…….. 11,4 15,4 20,9 24,8 27,9 31,8
При одинаковых условиях равновесные глубины дегидрирования изо-амилена и н-бутилена различаются незначительно.
Промышленное дегидрирование изоамиленов осуществляют на твердых катализаторах, содержащих, как правило, в качестве каталитически активных компонентов оксиды железа и хрома. Ниже приведен типичный состав хромже-лезоцинкового катализатора, ( в % (мол.)).
CrO3 - 0,5; Cr2O3 - 5-6; ZnO - 2-4; Fe2O3 - 15-17; ZnCr2O4 - 45-50; FeCr2O4 - 20-25.
Одностадийное дегидрирование изопентана в изопрен
При получении изопрена двухстадийным дегидрированием изопентана каждую стадию проводят в различных по конструкции реакторах и на различ-ных катализаторах, что усложняет и удорожает технологическую схему. Кроме того, большие проблемы создает разделение изопентан-изоамиленовых смесей,
|
150 |
|
|
получаемых на первой стадии процесса. Одностадийный процесс лишен этих недостатков.
Одностадийное дегидрирование изопентана в изопрен
изо-C5H12 C5H8 + 2H2
является эндотермической реакцией. Фактически протекают две последова-тельные реакции: дегидрирование изопентана в изопентены и получение изо-прена из изопентенов. Выходы целевого продукта строго контролируется тер-модинамикой процесса. При атмосферном давлении и температуре около 773 К содержание изопрена в равновесной изопентан-изопентен-изопреновой смеси менее 1%, а при 873 К доля изопрена достигает 10%. Увеличению равновесного содержания изопрена благоприятствует понижение парциального давления ис-ходного углеводорода. Так, при температуре около 800 К и парциальном давле-нии 0,02 МПа равновесная смесь содержит около 10% изопрена, а при том же давлении и температуре 873 К доля изопрена возрастает до 33%. Понижение парциального давления углеводорода можно обеспечить не только проведением реакции под вакуумом, но и разбавлением исходного сырья инертным разбави-телем, например водяным паром. Таким образом, термодинамически выгодны-ми условиями проведения дегидрирования изопентана в изопрен являются вы-сокая температура (выше 900 К) и низкое парциальное давление пара изопента-на в реакционной смеси.
Производство изопрена одностадийным дегидрированием включает соб-ственно дегидрирование изопентана, выделение из контактного газа фракции углеводородов С5, выделение концентрированного изопрена и его очистку.
Дегидрирование изопентан-изопентеновых смесей в изопрен проводят при пониженном парциальном давлении углеводородов, что достигается при-менением инертного разбавителя или созданием вакуума в реакторе.
Простота аппаратурно-технологического оформления процесса с регене-ративным циклом обусловливает низкий уровень капитальных вложений и экс-плуатационных затрат; гибкость процесса в отношении сырья, так как на одной и той же установке можно перерабатывать фракции С5 любого состава.
В России этот процесс разработан специалистами НПО "Ярсинтез" (г.Ярославль).
Двухстадийное окислительное дегидрирование изопентана в изопрен
Окислительное дегидрирование изопентана. При окислительном де-гидрировании изопентана протекают следующие реакции:
- дегидрирование изопентана до изоамиленов
|
CnH2n+2 +X2 |
CnH2n-2 + 2HX, где X = О, I, Cl, Br |
|
|
|
|
изо-C5H12 + I2 |
CH3—CH—CH=CH2 + 2HI, |
|
|
CH3 |
|
151 |
|
|
|
изо-C5H12 + I2 |
CH3—C=CH—CH3+ 2HI, |
|
|
СН3 |
|
|
цис-транс-Изомеры |
|
|
|
|
если Х=О, то |
|
изо-C5H12 + О2 |
CH3—CH2—C=CH2 + 2H2О, |
|
CH3 |
|
|
|
- изомеризация изопентенов с миграцией двойной связи |
-
CH3—CH—CH=CH2
CH3—C=CH—CH3,
CH3 |
CH3 |
|
цис-транс-Изомеры |
CH3—CH—CH=CH2 |
CH3—CH2—C=CH2, |
CH3 |
CH3 |
-
CH3—C=CH—CH3
CH3—CH2—C=CH2,
CH3 |
CH3 |
- дегидрирование изопентенов |
|
CH3—CH—CH=CH2 +Х2 |
изо-C5H8 + 2HХ, |
CH3 |
|
CH3—C=CH—CH3 + Х2 |
изо-C5H8 + 2HХ, |
CH3 |
|
CH3—CH2—C=CH2 +Х2 изо-C5H8 + 2HХ,
CH3
а также скелетная изомеризация изопентана и изопентена, крекинг углеводоро-дов, горение углеводородов.
Основным достоинством реакций окислительного дегидрирования угле-водородов С4 и С5 с образованием бутадиена и изопрена является их практиче-ская необратимость. Отсутствие термодинамических ограничений позволяет значительно увеличить выходы диенов и проводить процесс при более низких температурах по сравнению с реакциями обычного дегидрирования.
Первые сообщения о применении кислорода в процессе дегидрирования олефинов появились в 1934-1935 гг. До середины 60-х годов для окислительно-го дегидрирования углеводородов применялись в основном известные висмут-молибденовые и сурьмянооловянные катализаторы окисления и окислительно-го аммонолиза углеводородов. Дальнейшие исследования привели к разработке катализаторов двух типов: катализаторов на основе оксидов молибдена, вольф-рама, фосфора, сурьмы и урана и катализаторов на основе железа. Каталитиче-ские системы для окислительного дегидрирования олефинов - фосфат висмута и вольфрамат висмута - были предложены в конце 1959г., а в начале 1960 г. появился новый катализатор - оксид молибдена (или другие соединения молиб-
|
152 |
|
|
дена), промотированный оксидом висмута. В дальнейшем для окислительного дегидрирования олефинов были предложены фосфаты, молибдаты, вольфрама-ты индия или его оксида на носителе, а также катализаторы, состоящие из ок-сидов молибдена, титана, сурьмы, висмута, меди, кобальта, олова, свинца и кадмия, их солей или смесей с оксидами фосфора, висмута или теллура. С 1964 г. проводились широкие исследования по разработке катализаторов окисли-тельного дегидрирования олефинов на основе ферритов некоторых металлов, например магния, кальция, цинка, стронция, кадмия, бария, марганца, кобальта, никеля. Выходы бутадиена на лучших образцах составляли 65-70 % при изби-рательности ~ 90%.
Наиболее эффективным акцептором водорода является иод. Иод одно-временно катализирует процесс дегидрирования. Однако стехиометрия реакций такова, что для получения одного моля изопрена необходимо два моля иода. Очевидна экономическая нереальность осуществления такого процесса. Расход иода можно значительно уменьшить, если в условиях реакции конвертировать иодид водорода в элементарный иод. Эффективным способом регенерации яв-ляется введение в реакционную смесь кислорода:
2HI + 0,5O2 I2 + H2O.
При этом снижается не только расход иода, но и возрастает селектив-ность процесса. Однако окислительное дегидрирование иодом в присутствии кислорода также не полностью решает проблему расхода иода, так как выход иодистых соединений достаточно высок.
Более эффективным способом сокращения расхода иода является приме-нение твердых акцепторов иодистого водорода. Акцепторы связывают иодид водорода:
MO + 2HI |
MI2 + H2O |
или M(OH)2 + 2HI MI2 + 2H2O
В качестве акцепторов могут применяться оксиды и другие соединения щелочных и щелочноземельных металлов, металлов переменной валентности и другие в виде расплавов либо нанесенные на твердые инертные носители - ок-сид алюминия, силикагель и др. Акцепторы иода должны быть выведены из зо-ны реакции и подвергнуты обработке чистым кислородом или воздухом: 2MI2 + O2 2MO + 2I2
2MI2 + O2 + 2H2O 2M(OH)2 + 2I2
Выделившийся иод и регенерированный катализатор возвращаются в зо-ну реакции. В процессе дегидрирования с иодом достигается довольно высокая селективность, что связано с ингибированием иодом реакций крекинга и глубо-кого окисления углеводородов.
Процесс этого типа реализован в промышленности.
Окислительное дегидрирование изопентенов. В отличие от окисли-тельного дегидрирования бутиленов процессы окислительного дегидрирования изоамиленов в изопрен не получили значительного развития. Наиболее селек-
|
153 |
|
|
тивными катализаторами в реакции превращения изоамилена в изопрен явля-ются оксиды железа, ванадия, молибдена, магния. Очевидно, что общность за-кономерностей изменения активности оксидов металлов в реакциях окисли-тельного дегидрирования н-бутиленов и изопентенов позволяет предполагать, что известные эффективные катализаторы окислительного дегидрирования н-бутиленов будут катализировать и реакцию окислительного дегидрирования изоамиленов. В качестве катализаторов могут быть использованы фосфат желе-за со сверхстеохиометрическим избытком фосфора. Выход изопрена достигает 70-80% при избирательности 80-90% ( разбавлениеи водяным паром 20-30 моль/моль изопентена). Хорошими каталитическими свойствами обладают фер-риты марганца и магния, молибденсурьмяные, ураносурьмяные, оловосурьмя-ные, висмутмолибденовый катализаторы.