Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
микробиология_1-6.docx
Скачиваний:
1
Добавлен:
25.11.2019
Размер:
182.37 Кб
Скачать

1.Уровни организации живых систем

Уровни организации живых систем представляют собой некую упорядоченность, иерархическую систему, которая является одним из основных свойств живого (табл. 1).

 

Таблица 1

Уровни организации живых систем

Основная группа или ступень

Уровень

Биологическая микросистема

Молекулярный  Клеточный

Биологическая мезосистема

Тканевый Органный Организменный

Биологическая макросистема

Популяционно-видовой Биоценотический Биосферный

 

Каждая живая система состоит из единиц подчиненных ей уровней организации и является единицей, входящей в состав живой системы, которой она подчинена. Например, организм состоит из клеток, являющихся живыми системами, и входит в состав организменных биосистем, таких как  популяции, биоценозы.

Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня. Так, характер клеточного уровня организации определяется молекулярным уровнем, характер организменного – клеточным; популяционно-видовой – организменным и т.д.

Характеристика структурных уровней живого

Молекулярный уровень. Молекулярный уровень несет отдельные, хотя и существенные признаки жизни. На этом уровне обнаруживается удивительное однообразие дискретных единиц. Основу всех животных, растений и вирусов составляют 20 аминокислот и 4 одинаковых азотистых основания, входящих в состав молекул нуклеиновых кислот. У всех организмов биологическая энергия запасается в виде богатой энергией аденозинтрифосфорной кислоты (АТФ). Наследственная информация у всех заложена в молекулах дизоксирибонуклеиновой кислоты (ДНК), способной к самовоспроизведению. Реализация наследственной информации осуществляется при участии молекул рибонуклеиновой кислоты (РНК).

Клеточный уровень. Клетка является основной самостоятельно функционирующей элементарной биологической единицей, характерной для всех живых организмов. У всех организмов только на клеточном уровне возможны биосинтез и реализация наследственной информации. Клеточный уровень у одноклеточных организмов совпадает с организменным. В истории жизни на нашей планете был такой период (первая половина протерозойской эры –  2 млрд лет назад), когда все организмы находились на этом уровне организации. Из таких организмов состояли все виды, биоценозы и биосфера в целом.

Тканевый уровень. Совокупность клеток с одинаковым типом организации составляет ткань. Тканевый уровень возник вместе с появлением многоклеточных животных и растений, имеющих различающиеся между собой ткани. Большое сходство между всеми организмами сохраняется на тканевом уровне.

Органный уровень. Совместно функционирующие клетки, относящиеся к разным тканям, составляют органы. Всего лишь шесть основных тканей входят в состав органов всех животных и шесть основных тканей образуют органы у растений.

Организменный уровень. На организменном уровне обнаруживается чрезвычайно большое многообразие форм. Разнообразие организмов, относящихся к разным видам, а также в пределах одного вида, объясняется не разнообразием дискретных единиц низшего порядка - клеток, тканей, органов, а усложнением их комбинаций, обеспечивающих качественные особенности организмов. В настоящее время на Земле обитает более миллиона видов животных и около полумиллиона видов растений. Каждый вид состоит из отдельных индивидуумов (организмы, особи), имеющих свои отличительные черты.

Популяционно-видовой уровень. Совокупность организмов одного вида, населяющих определенную территорию, составляет популяцию. Популяция – это надорганизменная живая система, которая является элементарной единицей эволюционного процесса; в ней начинаются процессы видообразования. Популяция входит в состав биоценозов

Биоценотический уровень. Биогеоценозы – исторически сложившиеся устойчивые сообщества популяций различных видов, связанных между собой и окружающей средой обменом веществ, энергии и информации. Они являются элементарными системами, в которых осуществляется вещественно-энергетический круговорот, обусловленный жизнедеятельностью организмов.

Биосферный уровень. Биогеоценозы в совокупности составляют биосферу и обусловливают все процессы, протекающие в ней.

Таким образом, мы видим, что вопрос о структурных уровнях в биологии имеет некоторые особенности по сравнению с его рассмотрением в физике. Эта особенность состоит в том, что изучение каждого уровня организации в биологии ставит своей главной целью объяснение феномена жизни. Действительно, если в физике деление на структурные уровни материи в достаточной степени условно (критериями являются масса и размеры), то уровни материи в биологии отличаются не столько размерами или уровнями сложности, сколько, закономерностями функционирования.

Действительно, если, например, исследователь изучил физико-химические свойства биологического объекта и его структуру, но не установил его биологического назначения в целостной системе, это будет означать, что изучен ещё один определенный объект, но не уровень живой материи.

Ещё одна особенность структуризации живой материи состоит в иерархической соподчиненности уровней. Это означает, что низшие уровни как единое целое входят в высшие. Эта концепция структуризации получила название «многоуровневой иерархической матрешки».

Важно отметить также, что число выделяемых в биологии уровней зависит от глубины профессионального изучения мира живого.

2.Основные свойства живого

К основным свойствам живого можно отнести:

1. Химический состав. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновые кислоты, белки, липиды).

2. Дискретность и целостность. Любая биологическая система (клетка, организм, вид и т.д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят отдельные органы, связанные структурно и функционально в единое целое).

3. Структурная организация. Живые системы способны создавать порядок из хаотичного движения молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенном порядке, направленном на поддержание постоянства внутренней среды — гомеостаза.

4. Обмен веществ и энергии. Живые организмы — открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды — гомеостаза. Например, продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составили начальное звено в длинной цепи реакций.

5. Самовоспроизведение. Самообновление. Время существования любой биологической системы ограничено. Для поддержания жизни происходит процесс самовоспроизведения, связанный с образованием новых молекул и структур, несущих генетическую информацию, находящуюся в молекулах ДНК.

6. Наследственность. Молекула ДНК способна хранить, передавать наследственную информацию, благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями.

7. Изменчивость. При передаче наследственной информации иногда возникают различные отклонения, приводящие к изменению признаков и свойств у потомков. Если эти изменения благоприятствуют жизни, они могут закрепиться отбором.

8. Рост и развитие. Организмы наследуют определенную генетическую информацию о возможности развития тех или иных признаков. Реализация информации происходит во время индивидуального развития — онтогенеза. На определенном этапе онтогенеза осуществляется рост организма, связанный с репродукцией молекул, клеток и других биологических структур. Рост сопровождается развитием.

9. Раздражимость и движение. Все живое избирательно реагирует на внешние воздействия специфическими реакциями благодаря свойству раздражимости. Организмы отвечают на воздействие движением. Проявление формы движения зависит от структуры организма.

Химический состав клетки

В клетке встречается около 70 химических элементов Периодической системы Д. И. Менделеева

Химические элементы, имеющиеся в клетке, делят на три большие группы: макроэлементы, мезоэлементы (олигоэлементы) имикроэлементы. Содержание макроэлементов составляет около 98 % массы клетки. К ним относятся углерод, кислород, водород и азот, входящие в состав основных органических веществ. Мезоэлементы — это сера, фосфор, калий, кальций, натрий, железо, магний, хлор, составляющие в сумме около 1,9 % массы клетки. Сера и фосфор являются компонентами важнейших органических соединений. Химические элементы, концентрация которых в клетке около 0,1 %, относятся к микроэлементам. Это цинк, йод, медь, марганец, фтор, кобальт и др. Вещества клетки делят на неорганические и органические. К неорганическим веществам относятся вода и минеральные соли. Благодаря своим физико-химическим свойствам вода в клетке является растворителем, средой для протекания реакций, исходным веществом и продуктом химических реакций, выполняет транспортную и терморегуляторные функции, придает клетке упругость, обеспечивает ту prop растительной клетки. Содержание химических элементов в клетке.

Минеральные соли в клетке могут находиться в растворенном или не растворенном состояниях. Растворимые соли диссоциируют на ионы. Наиболее важными катионами являются калий и натрий, облегчающие перенос веществ через мембрану и участвующие в возникновении и проведении нервного импульса; кальций, который принимает участие в процессах сокращения мышечных волокон и свертывании крови, магний, входящий в состав хлорофилла, и железо, входящее в состав ряда белков, в том числе гемоглобина. Цинк входит в состав молекулы гормона поджелудочной железы — инсулина, медь требуется для процессов фотосинтеза и дыхания. Важнейшими анионами являются фосфат-анион, входящий в состав АТФ и нуклеиновых кислот, и остаток угольной кислоты, смягчающий колебания рН среды. Недостаток кальция и фосфора приводит к рахиту, нехватка железа — к анемии. Содержание химических веществ в клетке.

Органические вещества клетки представлены углеводами, липидами, белками, нуклеиновыми кислотами, АТФ, витаминами и гормонами. В состав углеводов входят в основном три химических элемента: углерод, кислород и водород. Их общая формула Cm(H20)n. Различают простые и сложные углеводы. Простые углеводы {моносахариды) содержат единственную молекулу сахара. Их классифицируют по количеству углеродных атомов, например, пентозы (С5) и гексозы (С6). К пентозам относятся рибоза и дезоксирибоза. Рибоза входит в состав РНК и АТФ. Дезоксирибоза является компонентом ДНК. Гексозы — это глюкоза, фруктоза, галактоза и др. Они принимают активное участие в обмене веществ в клетке и входят в состав сложных углеводов — олигосахаридов и полисахаридов. К олигосахаридам (дисахаридам) относятся сахароза (глюкоза + фруктоза), лактоза или молочный сахар (глюкоза+галактоза) и др.

Глюкоза.

Примерами полисахаридов являются крахмал, гликоген, целлюлоза и хитин. Углеводы выполняют в клетке пластическую (строительную), энергетическую (энергетическая ценность расщепления 1 г углеводов — 17,6 кДж), запасающую и опорную функции. Углеводы могут также входить в состав сложных липидов и белков. Липиды — это группа гидрофобных веществ. К ним относят жиры, стероиды воска, фосфолипиды и т. д.

Строение молекулы жира Жир — это сложный эфир трехатомного спирта глицерина и высших органических (жирных) кислот. В молекуле жира можно выделить гидрофильную часть — «головку» (остаток глицерина) и гидрофобную часть — «хвосты» (остатки жирных кислот), поэтому в воде молекула жира ориентируется строго определенным образом: гидрофильная часть направлена к воде, а гидрофобная — от нее. Липиды выполняют в клетке пластическую (строительную), энергетическую (энергетическая ценность расщепления 1 г жира — 38,9 кДж), запасающую, защитную (амортизационную) и регуляторную (стероидные гормоны) функции. Белки — это биополимеры, мономерами которых являются аминокислоты. Аминокислоты содержат аминогруппу, карбоксильную группу и радикал. Отличаются аминокислоты только радикалами. В состав белков входит 20 основных аминокислот. Соединяются аминокислоты между собой с образованием пептидной связи. Цепочка из более чем 20 аминокислот называется полипептидом или белком. Белки образуют четыре основные структуры: первичную, вторичную, третичную и четвертичную. Первичная структура — это последовательность аминокислот, соединенных пептидной связью.

Вторичная структура — это спираль, или складчатая структура, удерживаемая водородными связями между атомами кислорода и водорода пептидных группировок разных витков спирали или складок. Третичная структура (глобула) удерживается гидрофобными, водородными, дисульфидными и другими связями.

Третичная структура характерна для большинства белков организма, например, миоглобина мышц.

Четвертичная структура наиболее сложная, образованная несколькими полипептидными цепями, соединенными в основном теми же связями, что и в третичной. Четвертичная структура характерна для гемоглобина, хлорофилла и др. Белки могут быть простыми и сложными. Простые белки состоят только из аминокислот, тогда как сложные белки (липопротеины, хромопротеины, гликопротеины, нуклеопротеины и др.) содержат белковую и небелковую части. Например, в состав гемоглобина помимо четырех полипептидных цепей белка глобина входит небелковая часть — гем, в центре которой находится ион железа, придающий гемоглобину красную окраску. Функциональная активность белков зависит от условий окружающей среды. Утрата белковой молекулой своей структуры вплоть до первичной называется денатурацией. Обратный процесс восстановления вторичной и более высоких структур — это ренатурация. Полное разрушение белковой молекулы называется деструкцией. Белки выполняют в клетке ряд функций: пластическую (строительную), каталитическую (ферментативную), энергетическую(энергетическая ценность расщепления 1 г белка — 17,6 кДж), сигнальную (рецепторную), сократительную (двигательную),транспортнуюзащитную, регуляторнуюзапасающую. Нуклеиновые кислоты — это биополимеры, мономерами которых являются нуклеотиды. В состав нуклеотида входят азотистое основание, остаток сахара-пентозы и остаток ортофосфорной кислоты. Выделяют два типа нуклеиновых кислот: рибонуклеиновую (РНК) и дезоксири-бонуклеиновую (ДНК). ДНК включает четыре типа нуклеотидов: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). В состав этих нуклеотидов входит сахар де-зоксирибоза. Для ДНК установлены правила Чаргаффа: 1)   количество адениловых нуклеотидов в ДНК равно количеству тимидиловых (А = Т); 2)   количество гуаниловых нуклеотидов в ДНК равно количеству цитидиловых (Г = Ц); 3)   сумма адениловых и гуаниловых нуклеотидов равна сумме тимидиловых и цитидиловых (А + Г = Т + Ц). Структура ДНК была открыта Ф. Криком и Д. Уотсоном (Нобелевская премия по физиологии и медицине 1962 г.). Молекула ДНК представляет собой двуцепочечную спираль. Нуклеотиды соединяются между собой через остатки фосфорной кислоты, образуя фосфодиэфирную связь, при этом азотистые основания направлены вовнутрь. Расстояние между нуклеотидами в цепи равно 0,34 нм. Нуклеотиды разных цепей соединяются между собой водородными связями по принципу комплементарности: аденин соединяется с тими-ном двумя водородными связями (А = Т), а гуанин с цитозином — тремя (Г = Ц).

Строение нуклеотида

Важнейшим свойством ДНК является способность к репликации (самоудвоению). Основной функцией ДНК является хранение и передача наследственной информации.

ДНК

Она сосредоточена в ядре, митохондриях и пластидах. В состав РНК входят также четыре нуклеотида: аденин (А), ура-цил (У), гуанин (Г) и цитозин (Ц). Остаток сахара-пентозы в ней представлен рибозой. РНК — в основном одноцепочечные молекулы. Выделяют три вида РНК: информационную (и-РНК), транспортную (т-РНК) и рибосомальную (р-РНК).

Строение тРНК

Все они принимают активное участие в процессе реализации наследственной информации, которая с ДНК переписывается на и-РНК, а на последней осуществляется уже синтез белка, т-РНК в процессе синтеза белка приносит аминокислоты к рибосомам, р-РНК входит в состав самих рибосом.

Аденозинтрифосфорная кислота (АТФ)

Витамины