
- •Предмет и задачи метрологии
- •Законодательная метрология
- •2.1 Государственное законодательство по обеспечению единства измерений
- •2.2 Государственная система метрологического обеспечения
- •Типовая структура метрологической службы промышленного предприятия
- •2.4 Международные метрологические организации
- •2.4.1 Международная организация мер и весов (момв)
- •2.4.2 Международная организация законодательной метрологии (мозм)
- •2.4.3 Другие международные организации
- •2.4.4 Межгосударственная координация по метрологии в снг
- •3 Информационная характеристика процесса измерения
- •4 Физические величины и их шкалы
- •4.1 Понятие шкалы реперов измеряемой величины
- •4.2 Определение наиболее распространенных шкал
- •4.4 Правила написания обозначение единиц
- •5 Погрешности измерений
- •5.1 Причины погрешностей
- •5.2 Обозначение погрешности
- •5.3 Классификация погрешностей
- •5.4 Оценка случайных погрешностей
- •5.5 Суммирование погрешностей
- •6. Общие правила выполнения измерения
- •6.1 Организация измерений
- •6.2. Учет систематических погрешностей и способы их уменьшения
- •6.3 Обработка результатов измерения
- •6.4 Форма представления и интерпретация результатов измерения
- •7 Метрологическая аттестация
- •7.1 Аттестация, поверка и испытания средств измерения
- •7.2 Сертификация средств измерений
- •8 Методы и средства для измерения электрических величин
- •8.1 Условные обозначения на шкалах приборов
- •8.2 Системы измерительных приборов
- •8.2.1 Магнитоэлектрические механизмы
- •8.2.2 Электродинамические механизмы
- •8.2.3 Электромагнитные механизмы
- •8.2.4 Электростатические механизмы
- •8.2.5 Выпрямительные приборы
- •8.2.6 Термоэлектрические приборы
- •8.3 Электронные приборы
- •8.3.1 Электронные вольтметры
- •8.3.2 Электронные омметры
- •8.3.3 Электронно-лучевые осциллографы
- •8.4 Мостовые и компенсационные измерительные схемы
- •8.4.1 Мостовые измерительные цепи
- •8.4.2 Компенсационные измерительные цепи
- •8.4.3 Автоматические мосты и компенсаторы
- •8.5 Цифровые приборы
- •8.5.1 Аналого-цифровые преобразователи
- •8.5.2 Цифровые вольтметры
- •8.5.3 Измерители частоты и интервалов времени
- •9 Измерение неэлектрических величин электрическими методами
- •9.1 Классификация измерительных преобразователей
- •9.2 Резистивные преобразователи
- •9.3 Электромагнитные преобразователи
- •9.4 Электростатические преобразователи
- •9.5 Тепловые преобразователи
8.2.4 Электростатические механизмы
Рис. 8.11 - Электростатический механизм
Электростатические измерительные механизмы основаны на использовании эффекта перемещения подвижной части под действием энергии электрического поля системы двух или более заряженных проводников. Механизм представляет собой конденсатор переменной емкости - рис. 8.11. Перемещение подвижной части связано с изменением емкости конденсатора. Существуют механизмы, у которых изменение электрической емкости системы происходят за счет изменения активной площади проводников или за счет изменения расстояния между проводниками постоянной площади. Первый способ характерен для вольтметров с напряжением от десятков до сотен вольт, второй – для киловольтметров. По принципу действия приборы электростатической системы могут измерять только напряжение.
На переменном напряжении используется действующее значение напряжения.
В принципе шкала приборов электростатической системы неравномерна. Реально ее удается линеаризировать в пределах 15-100 % шкалы.
Электроды механизма изготавливаются из алюминия. Расстояние между подвижными и неподвижными электродами очень мало - менее миллиметра, поэтому в прибор встраивается защитное сопротивление, включенное последовательно в цепь и не влияющее на величину вращающего момента.
С1 R1
U
U
C2 R2
Рис. 8.12 - Расширение пределов Рис. 8.13 - Расширение пределов
электростатического вольтметра электростатического вольтметра
на постоянном токе. на переменном токе.
Чувствительность механизмов этого типа не велика. Вольтметров электростатической системы на напряжение ниже 10 В не существует. Для исключения влияния внешних электрических полей механизмы экранируют.
Достоинством электростатической системы является возможность измерения напряжений как постоянного, так и переменного тока, в том числе высоких частот. Приборы обладают малой температурной и частотной погрешностью. На высоких частотах, более 300 кГц, защитный резистор вносит дополнительную погрешность и его отключают.
Существенным преимуществом электростатических механизмов является отсутствие потребления мощности при измерениях в цепях постоянного тока и очень малое потребление в цепях переменного тока.
Расширение диапазона измерения на переменном токе производятся включением емкостного (рис. 8.12), а на постоянном токе резистивного (рис. 8.13) делителей.
Электростатические вольтметры выпускаются классов точности от 0,5 до 1,5 на напряжения от 10 В до 300 кВ и частоту до 10 МГц.
8.2.5 Выпрямительные приборы
Выпрямительные приборы были разработаны с целью расширить сферу применения высокоточных и высокочувствительных магнитоэлектрических механизмов на цепи переменного тока. Они представляют собой сочетание магнитоэлектрического измерительного механизма с полупроводниковым выпрямителем.
В зависимости от схемы выпрямителя различают одно и двухполупериодное выпрямление. На рис. 8.14. приведена схема выпрямительного амперметра, использующего однопериодное выпрямление. Через измерительный механизм проходят полуволны переменного тока одной полярности. Обратные полуволны проходят через диод VD2 и резистор R, величина которого выбирается равной сопротивлению рамки механизма. Сопротивление прибора оказывается одинаковым для любого направления измеряемого тока. На рис. 5.15. показаны две возможные схемы двухполупериодного выпрямления: трансформаторная с выводом от средней точки вторичной обмотки и мостовая. Трансформатор позволяет гальванически разделить цепи измеряемого тока и измерительного механизма. Недостатком трансформатора является зависимость его параметров от частоты.
VD1 I I
I 0 t
I
а) VD2 R б) 0 t
Рис. 8.14 - Выпрямительный амперметр с однополупериодным
выпрямителем: а – схема, б – временная диаграмма.
VD1
Tp
I1 VD1 VD2
I2
VD4
а ) VD3
б )
Рис. 8.15 - Выпрямительный прибор с двухпериодным выпрямителем
а – трансформаторным, б – мостовым.
В двухполупериодной схеме выпрямления обе полуволны выпрямленного тока протекают через измерительный механизм, т.е. среднее значение выпрямленного тока в два раза больше.
Шкалы приборов градуируются в действующих значениях переменного тока или напряжения. Действующие и средневыпрямленные значения связаны между собой выражением:
Iср =I/Kф
где Кф – коэффициент формы кривой тока. Для синусоиды Кф=1,11. При несинусоидальных токах или напряжениях возникает погрешность показаний выпрямительных приборов.
Без частотной компенсации вольтметры могут измерять переменное напряжение частотой до 1-2 кГц, а с компенсацией – до 40 кГц. Выпрямительные вольтметры выпускаются на напряжение до 600 В при классах точности не лучше 1,0.