Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы Колоквиум.docx
Скачиваний:
18
Добавлен:
24.11.2019
Размер:
434.72 Кб
Скачать

15. Электрическое поле в диэлектриках

Тело, обладающее электрическим зарядом, создает в окружающем пространстве электрическое поле, которое может быть обнаружено по его воздействию на другие заряженные тела.

Электрическое поле является формой материи. Сила, действующая в электрическом поле на заряженное тело, пропорциональна величине его заряда и зависит от интенсивности самого поля.

Отношение этой силы к величине заряда называется напряжен­ностью поля (Е). В практической системе единиц напряженность поля точечного заряда

где εа — коэффициент, характеризующий среду, в которой происходит взаимодействие.

Коэффициент εа называют абсолютной диэлектрической проницае­мостью; для вакуума в СИ εа = 8,86-10-12 ф/м; эту величину обозна­чают через ε0 и называют электрической постоянной. Отношение εа, данного вещества к ε0 называется относительной диэлектрической проницаемостью ε'.

Напряженность электрического поля в диэлектрике, при которой происходит пробой, называют электрической прочностью диэлек­трика (Епр).

16. Напряженность электростатического поля, как следует из ранее полученной формулы E=E0/ε , зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна ε. Вектор напряженности Е, при переходе через границу диэлектриков, испытывает скачкообразное изменение, тем самым делая неудобства при расчетах электростатических полей. Поэтому необходимо помимо вектора напряженности характеризовать поле еще вектором электрического смещения, который для электрически изотропной среды, по определению, равен   (1)  Поскольку ε=1+θ и P=θε0E , вектор электрического смещения равен   (2)  Единица электрического смещения — кулон на метр в квадрате (Кл/м2).  Выясним, с чем можно связать вектор электрического смещения. Связанные заряды образуются в диэлектрике при наличии внешнего электростатического поля, который создается системой свободных электрических зарядов, т. е. в диэлектрике электростатическое поле свободных зарядов суммируется с дополнительным полем связанных зарядов. Результирующее поле в диэлектрике характеризуется вектором напряженности Е, и потому он зависит от свойств диэлектрика. Вектором D характеризуется электростатическое поле, которое создавается свободными зарядами. Связанные заряды, которые возникают в диэлектрике, могут вызвать перераспределение свободных зарядов, которые создают поле. Поэтому вектор D характеризует электростатическое поле, которое создается свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.  Аналогичным образом, как и поле Е, поле D следует графически изображать с помощью линий электрического смещения, направление и густота которых задаются также, как и для линий напряженности.  Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора D — только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.  Для любой замкнутой поверхности S поток вектора D сквозь эту поверхность    где Dn — проекция вектора D на единичный перпендикуляр n к площадке dS.  Теорема Гаусса для электростатического поля в диэлектрике (3)  т. е. поток вектора смещения электростатического поля в диэлектрике сквозь любую замкнутую поверхность равен алгебраической сумме свободных электрических зарядов, заключенных внутри этой поверхности. В такой форме теорема Гаусса верна для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.  Для вакуума Dn = ε0En (ε=1), и поток вектора напряженности Е сквозь произвольно выбранную замкнутую поверхность равен    Так как источниками поля Е в среде являются как свободные, так и связанные заряды, то теорему Гаусса для поля Е в самом общем виде можно записать как    где ∑Qi и ∑Qsv— соответственно алгебраические суммы свободных и связанных зарядов, которые охватываются замкнутой поверхностью S. Но эта формула неприменима для описания поля Е в диэлектрике, поскольку она выражает свойства неизвестного поля Е через связанные заряды, которые, в свою очередь, определяются им же. Это еще раз показывает целесообразность введения вектора электрического смещения.  17. Исследуем связь между векторами Е и D на границе раздела двух однородных изотропных диэлектриков (у которых диэлектрические проницаемости равны ε1 и ε2при отсутствии на границе свободных зарядов

Рис.1

Проведем вблизи границы раздела диэлектриков 1 и 2 небольшой замкнутый прямоугольный контур ABCDA длины l, с направлением ориентации, как показано на рис. 1. По теореме о циркуляции вектора Е, применительно к данному случаю    откуда    (знаки интегралов по АВ и CD разные, поскольку пути интегрирования противоположны, а интегралы по участкам ВС и DA малы). Поэтому   (1)  Заменив проекции вектора Е проекциями вектора D, деленными на ε0ε, получим   (2)  построим прямой цилиндр ничтожно малой высоты на границе раздела двух диэлектриков (рис. 2); одно основание цилиндра находится в первом диэлектрике, другое — во втором. Основания ΔS настолько малы, что в пределах каждого из них вектор D одинаков. Согласно теореме Гаусса для электростатического поля в диэлектрике    (нормали n и n' к основаниям цилиндра противоположно направлены). Поэтому   (3)  Заменив проекции вектора D проекциями вектора Е, умноженными на ε0ε, получим   (4)  Значит, при переходе через границу раздела двух диэлектрических сред тангенциальная составляющая вектора Еτ) и нормальная составляющая вектора D(Dn) изменяются непрерывным образом (не испытывают скачка), а нормальная составляющая вектора Еn) и тангенциальная составляющая вектора D(Dτ) испытывают скачок.  Из условий (1) — (4) для составляющих векторов Е и D мы видим, что линии этих векторов испытывают излом (преломляются). Найдем как связаны между углы α1 и α2 (на рис. 3 α12). Используя (1) и (4), Еτ2 = Еτ1 и ε2En2 = ε1En1. Разложим векторы E1 и E2 на тангенциальные и нормальные составляющие у границы раздела. Из рис. 3 мы видим, что    Учитывая записанные выше условия, найдем закон преломления линий напряженности Е (а значит, и линий смещения D   Из этой формулы можно сделать вывод, что, входя в диэлектрик с большей диэлектрической проницаемостью, линии Е и D удаляются от нормали. 

18. Сообщенный проводнику заряд q распределяется по его поверхности так, чтобы напряженность поля внутри проводника была равна нулю. Если проводнику, уже несущему заряд q , сообщить еще заряд той же величины, то второй заряд должен распределиться по проводнику точно также, как и первый, в противном случае он создает в проводнике поле, не равное нулю. Таким образом, различные по величине заряды распределяются на удаленном от других тел (уединенном) проводнике подобным образом, т.е. отношение плотностей заряда в двух произвольных точках поверхности проводника при любой величине заряда будет одно и то же.

Отсюда вытекает, что потенциал уединенного проводника пропорционален находящемуся на нем заряду. Действительно, увеличение в некоторое число раз заряда приводит к увеличению в тоже число раз напряженности поля в каждой точке окружающего проводника пространства, т.е.

Вводя соответствующий коэффициент пропорциональности, запишем   или

(15.2)

где С - называется электроемкостью.

Таким образом, электроемкость уединенного проводника есть физическая величина численно равная величине заряда, который необходимо сообщить данному проводнику для увеличения его потенциала на единицу. В СИ единицей емкости является Фарад (Ф).

Определим электроемкость уединенного шара. Потенциал заряженного шара радиуса R

Сравнивая с   получаем

19.  Энергия системы неподвижных точечных зарядов. Как мы уже знаем, электростатические силы взаимодействия консервативны; значит, система зарядов обладает потенциальной энергией. Будем искать потенциальную энергию системы двух неподвижных точечных зарядов Q1 и Q2, которые находятся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (используем формулу потенциала уединенного заряда):    где φ12 и φ21 — соответственно потенциалы, которые создаются зарядом Q2 в точке нахождения заряда Q1 и зарядом Q1 в точке нахождения заряда Q2. Согласно,   и    поэтому W1 = W2 = W и    Добавляя к нашей системе из двух зарядов последовательно заряды Q3, Q4, ... , можно доказать, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна   (1)  где φi — потенциал, который создается в точке, где находится заряд Qi, всеми зарядами, кроме i-го.  2. Энергия заряженного уединенного проводника. Рассмотрим уединенный проводник, заряд, потенциал и емкость которого соответственно равны Q, φ и С. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный проводник, при этом затратив на это работу, которая равна  ");?>" alt="элементарная работа сил электрического поля заряженного проводника">  Чтобы зарядить тело от нулевого потенциала до φ, нужно совершить работу   (2)  Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник:   (3)  Формулу (3) можно также получить и условия, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Если φ - потенциал проводника, то из (1) найдем    где Q=∑Qi - заряд проводника.  3. Энергия заряженного конденсатора. Конденсатор состоит из заряженных проводников поэтому обладает энергией, которая из формулы (3) равна   (4)  где Q — заряд конденсатора, С — его емкость, Δφ — разность потенциалов между обкладками конденсатора.  Используя выражение (4), будем искать механическую (пондеромоторную) силу, с которой пластины конденсатора притягиваются друг к другу. Для этого сделаем предположение, что расстояние х между пластинами изменилось на величину dx. Тогда действующая сила совершает работу dA=Fdx вследствие уменьшения потенциальной энергии системы Fdx = — dW, откуда   (5)  Подставив в (4) выражение для емкости плоского конденсатора, получим   (6)  Продифференцировав при фиксированном значении энергии (см. (5) и (6)), получим искомую силу:    где знак минус указывает, что сила F является силой притяжения.  4. Энергия электростатического поля. Используем выражение (4), которое выражает энергию плоского конденсатора посредством зарядов и потенциалов, и спользуя выражением для емкости плоского конденсатора (C=ε0εS/d) и разности потенциалов между его обкладками (Δφ=Ed. Тогда   (7)  где V= Sd — объем конденсатора. Формула (7) говорит о том, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, — напряженность Е.  Объемная плотность энергии электростатического поля (энергия единицы объема)   (8)  Выражение (8) справедливо только для изотропного диэлектрика, для которого выполняется соотношение: Р = æε0Е.  Формулы (4) и (7) соответственно выражают энергию конденсатора через заряд на его обкладках и через напряженность поля. Возникает вопрос о локализации электростатической энергии и что является ее носителем — заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика занимается изучением постоянных во времени поля неподвижных зарядов, т. е. в ней поля и попродившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на данный вопрос не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать отдельно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, которые способны переносить энергию. Это убедительно подтверждает основное положение теории близкодействия о том, что энергия локализована в поле и что носителем энергии является поле