Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы Колоквиум.docx
Скачиваний:
18
Добавлен:
24.11.2019
Размер:
434.72 Кб
Скачать

[Править]Вывод из формализма Лагранжа

Рассмотрим функцию Лагранжа свободного тела   зависящую от обобщённых координат   обобщённых скоростей   и времени t. Здесь точка над q обозначает дифференцирование по времени,   Выберем для рассмотрения прямоугольную декартову систему координат, тогда  для каждой  -той частицы. Используя однородность пространства, мы можем дать всем радиус-векторам частиц одинаковое приращение, которое не будет влиять на уравнения движения:   где   В случае постоянства скорости функция Лагранжа изменится следующим образом:

где суммирование идет по всем частицам системы. Так как приращение не влияет на уравнения движения, то вариация функции Лагранжа должна быть равной нулю:   С учётом того, что вектор   — произвольный, последнее требование выполняется при:

Воспользуемся уравнением Лагранжа 

Это означает, что сумма, стоящая под знаком дифференциала, — постоянная величина для рассматриваемой системы. Сама сумма и есть суммарный импульс системы:

.

Учитывая, что лагранжиан свободной частицы имеет вид:   нетрудно видеть, что последнее выражение совпадает с выражением в ньютоновом формализме:

Для релятивистской свободной частицы лагранжиан имеет несколько другую форму:   что приводит к релятивистскому определению импульса

В настоящее время не существует каких-либо экспериментальных фактов, свидетельствующих о невыполнении закона сохранения импульса.

[Править]Закон сохранения импульса в общей теории относительности

Основная статьяПроблема законов сохранения в общей теории относительности

Аналогично ситуации с законом сохранения энергии, при переходе к искривлённому пространству-времени закон сохранения импульса, выражаемый пространственными компонентами соотношения для тензора энергии-импульса

где точка с запятой выражает ковариантную производную, приводит лишь к локально сохраняющимся величинам. Это связано с отсутствием глобальной однородности пространства в пространстве-времени общего вида.

Можно придумать такие определения импульса гравитационного поля, что глобальный закон сохранения импульса будет выполняться при движении во времени системы тел и полей, но все такие определения содержат элемент произвола, так как вводимый импульс гравитационного поля не может быть тензорной величиной при произвольных преобразованиях координат.

6.Силы в механике

Все многообразие встречающихся в природе взаимодействий сводится всего лишь к четырем типам. Это гравитационное электромагнитное, ядерное (или сильное) и слабое взаимодействие. В механике Ньютона  можно рассматривать только гравитационное и электромагнитное взаимодействия. В отличие от короткодействующих ядерного и слабого взаимодействия, гравитационное и электромагнитное взаимодействия – дальнодействующие: их действия проявляются на очень больших расстояниях.

 

Название силы

Природа взаимодействия

Формула для расчета силы

Зависимость силы от расстояния или относительной скорости

Зависит ли сила от массы взаимодействующих тел

Как направлена сила

Сила тяготения

гравитационная

Является функцией расстояния между взаимодействующими телами

Прямо пропорциональна массам взаимодействующих тел

Вдоль прямой, соединяющей взаимодействующие тела

Сила упругости

электромагнитная

Является функцией расстояния (зависит от деформации)

Не зависит

Противоположно направлению перемещения частиц при деформации

Сила трения

а)сухого

б)жидкого

электромагнитная

Является функцией скорости относительного движения

Не зависит

Противоположно направлению вектора скорости

7. Энергия — универсальная мера различных форм движения и взаимодействия. С раз­личными формами движения материи связывают различные формы энергии: механи­ческую, тепловую, электромагнитную, ядерную и др. В одних явлениях форма движе­ния материи не изменяется (например, горячее тело нагревает холодное), в дру­гих — переходит в иную форму (например, в результате трения механическое движение превращается в тепловое). Однако существенно, что во всех случаях энергия, отданная (в той иди иной форме) одним телом другому телу, равна энергии, полученной последним телом.

Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы.

Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол  с направлением перемещения, то работа этой силы равна произведению проекции силы Fs на направление перемещения (FsFcos), умноженной на перемещение точки приложения силы:

                                                                         (11.1)

В общем случае сила может изменяться как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться нельзя. Если, однако, рассмотреть элементар­ное перемещение dr, то силу F можно считать постоянной, а движение точки ее приложения — прямолинейным. Элементарной работой силы F на перемещении dr называется скалярная величина

где  — угол между векторами F и dr; ds = |dr| — элементарный путь; Fs  проекция вектора F на вектор dr (рис. 13).

Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу

                                                                (11.2)

Для вычисления этого интеграла надо знать зависимость силы Fs, от пути s вдоль траектории 12. Пусть эта зависимость представлена графически (рис. 14), тогда искомая работа А определяется на графике площадью заштрихованной фигуры. Если, например, тело движется прямолинейно, сила F=const и =const, то получим

где s — пройденный телом путь (см. также формулу (11.1)).

Из формулы (11.1) следует, что при  < /2 работа силы положительна, в этом случае составляющая Fs совпадает по направлению с вектором скорости движе­ния v (см. рис. 13). Если  > /2, то работа силы отрицательна. При  = /2 (сила направлена перпендикулярно перемещению) работа силы равна нулю.

Единица работы — джоуль (Дж): 1 Дж — работа, совершаемая силой 1 Н на пути 1 м (1 Дж=1 Н  м).

Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:

                                                                   (11.3)

За время dt сила  F совершает работу Fdr, и мощность, развиваемая этой силой, в данный момент времени

т. е. равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы; N — величина скалярная.

Единица мощности — ватт (Вт): 1 Вт — мощность, при которой за время 1 с совершается работа 1 Дж (1 Вт = 1 Дж/с).

8. равнение движения тела под действием внешней силы имеет вид (рис. 5.1)

или, в проекции на направление движения,

 

,

 (5.1.1)

 

  Рис. 5.1

       Умножив обе части равенства (5.1.1) на   , получим

.

       Левая часть равенства есть полный дифференциал некоторой функции:

,            

       Если система замкнута, то     и  Fτ = 0. Тогда и            Если полный дифференциал некоторой функции, описывающей поведение системы, равен нулю, то эта функция может служить характеристикой состояния данной системы.         Функция состояния системы, определяемая только скоростью ее движения, называется кинетической энергией.

 

 (5.1.2)

 

Кинетическая энергия системы есть функция состояния движения этой системы. K – аддитивная величина:

K – относительная величина, её значение зависит от выбора системы координат (так же как и   – относительная величина).         Энергия измеряется в СИ в единицах произведения силы на расстояние, т.е. в ньютонах на метр. 1 Н·м = 1 Дж.  Кроме того, в качестве единицы измерения энергии используется внесистемная единица – электрон-вольт (эВ). 1 эВ = 1,6·1019 Дж.         При решении задач полезна формула, связывающая кинетическую энергию с импульсом p. Получим её:

отсюда

 

 (5.1.3)

 

       Теперь рассмотрим связь кинетической энергии с работой.         Если постоянная сила действует на тело, то оно будет двигаться в направлении силы. Тогда элементарная работа по перемещению тела из точки 1 в точку 2, будет равна произведению силы F на перемещение dr :

dA = F dr,  отсюда   ,          ,

Окончательно получаем:

.

Следовательно, работа силы, приложенной к телу на пути r, численно равна изменению кинетической энергии этого тела:

 

 (5.1.4)

 

Или изменение кинетической энергии dK равно работе внешних сил:

dK = dA.

       Работа, так же как и кинетическая энергия, измеряется в джоулях.         Скорость совершения работы (передачи энергии) называется мощность.         Мощность есть работа, совершаемая в единицу времени.         Мгновенная мощность  , или           Средняя мощность           Измеряется мощность в ваттах. 1 Вт = 1 Дж/с.