
- •1 Задачи анализа;
- •2 Задачи синтеза;
- •3 Задачи идентификации.
- •Основные задачи теории кс
- •1. Задачи анализа;
- •2. Задачи синтеза;
- •3. Задачи идентификации.
- •2. Высокой интенсивностью взаимодействия и вытекающим отсюда требованием уменьшения времени ответа.
- •Функционирование кс
- •Основные задачи теории вычислительных систем
- •Общая характеристика методов теории вычислительных систем
- •3. Классификация вычислительных систем
- •Характеристики производительности и надежности кс
- •Характеристики надежности кс
- •1 Холодное резервирование. Работает только основной канал.
- •2 Нагруженный резерв. Включены оба канала (резервный канал занимается посторонними задачами). Время перехода на основную задачу меньше чем в холодном резерве.
- •Общая характеристика методов теории вычислительных систем
- •Характеристики производительности кс
- •1. Номинальная производительность ;
- •2. Комплексная производительность ;
- •3. Пакеты тестовых программ spec XX
- •Характеристики надежности кс
- •1 Холодное резервирование. Работает только основной канал.
- •2 Нагруженный резерв. Включены оба канала (резервный канал занимается посторонними задачами). Время перехода на основную задачу меньше чем в холодном резерве.
- •4) Указывается начальное состояние системы;
- •8) Находятся показатели качества вс на основе найденных вероятностей состояния системы.
- •Анализ надежности кс со сложной структурой
- •2.Расчет надежности кс
- •2. Для каждой вершины можно вычислить среднее количество попаданий вычислительного процесса в эту вершину по формуле
- •1. Разбить множество операторов на классы:
- •Модели вычислительных систем как систем массового обслуживания
- •1 Общие понятия и определения
- •Например m/m/1
- •2 Параметры систем массового обслуживания
- •Модели массового обслуживания вычислительных систем|
- •1. Представление вычислительной системы в виде стохастической сети
- •2. Потоки заявок
- •3. Длительность обслуживания заявок
- •Характеристики одноканальных смо
- •Многопроцессорные системы
- •5. Характеристики бесприоритетных дисциплин обслуживания
- •1) В порядке поступления (первой обслуживается заявка, поступившая раньше других);
- •2) В порядке, обратном порядку поступления заявок (первой обслуживается заявка, поступившая позже других);
- •3) Наугад, т. Е. Путем случайного выбора из очереди.
- •6. Характеристики дисциплины обслуживания с относительными приоритетами заявок
- •3.8. Характеристики дисциплин обслуживания со смешанными приоритетами
- •§ 3.9. Обслуживание заявок в групповом режиме
- •§ 3.10. Смешанный режим обслуживания заявок
- •§ 3.11. Диспетчирование на основе динамических приоритетов
- •§ 3.12. Оценка затрат на диспетчирование
- •1.Определяется интенсивность потока заявок I в смо Si из системы алгебраических уравнений
- •2.Вычисляются коэффициенты передач для каждой смо
- •3.Определяется среднее время обслуживания Ui заявки в смо Si :
- •6.Для моделирующей сети в целом характеристики п.5 определяются как
- •2.Расчет характеристик мультипроцессорной системы
- •1) Имеет доступ к общей памяти;
- •1.Средняя длина очереди заявок, ожидающих обслуживания в системе:
- •3. Среднее время пребывания заявок в системе :
- •Основные задачи теории кс
- •1. Задачи анализа;
- •2. Задачи синтеза;
- •3. Задачи идентификации.
- •1) С неограниченным временем пребывания заявок;
- •2) С относительными ограничениями на время пребывания заявок;
- •3) С абсолютными ограничениями на время пребывания заявок;
- •2.4. Контроллеры и сетевые комплексы ge Fanuc
- •Модели 311,313/323, 331
- •Коммуникационные возможности серии 90-30
- •2.4.3. Контроллеры VersaMax
- •2.4.4. Программное обеспечение
- •Общая характеристика протоколов и интерфейсов асу тп
- •2. Протоколы и интерфейсы нижнего уровня.
- •2. Основные технические характеристики контроллеров и программно-технических комплексов
- •Требования к корпоративной сети
- •2) Одновременное решение различных задач или частей одной задачи;
- •3) Конвейерная обработка информации.
- •1. Суть проблемы и основные понятия
- •1.1 Главные этапы распараллеливания задач
- •1.2 Сведения о вычислительных процессах
- •1.3 Распределенная обработка данных
- •1. Классификации архитектур параллельных вычислительных систем
- •1.1 Классификация Флинна
- •1. Процессоры
- •Память компьютерных систем
- •Простые коммутаторы
- •Простые коммутаторы с пространственным разделением
- •Составные коммутаторы
- •Коммутатор Клоза
- •Баньян-сети
- •Распределенные составные коммутаторы
- •Коммутация
- •Алгоритмы выбора маршрута
- •Граф межмодульных связей Convex Exemplar spp1000
- •Граф межмодульных связей мвс-100
- •3. Граф межмодульных связей мвс-1000
- •1. Построения коммуникационных сред на основе масштабируемого когерентного интерфейса sci
- •2. Коммуникационная среда myrinet
- •3. Коммуникационная среда Raceway
- •4. Коммуникационные среды на базе транспьютероподобных процессоров
- •1. Структура узла
- •2. Пакеты и свободные символы
- •3. Прием пакетов
- •4. Передача пакетов
- •5. Управление потоком
- •1. Структура адресного пространства
- •2. Регистры управления и состояния
- •3. Форматы пакетов
- •Когерентность кэш-памятей
- •1. Организация распределенной директории
- •2. Протокол когерентности
- •3. Алгоритм кэширования.
- •1 . Основные характеристики
- •1.2. Происхождение
- •1.3. Механизм когерентности
- •1. 4. Предназначение
- •1. 5. Структура коммуникационных сред на базе sci
- •1. 6. Физическая реализация
- •1. 7. Обозначение каналов
- •2. Реализация коммуникационной среды
- •2.1. На структурном уровне коммуникационная среда состоит из трех компонентов, как показано на рис. 2.1:
- •Масштабируемый когерентный интерфейс sci
- •Сетевая технология Myrinet
- •Коммуникационная среда Raceway
- •Коммуникационные среды на базе транспьютероподобных процессоров
- •1.Информационные модели
- •1.2. Мультипроцессоры
- •1.3. Мультикомпьютеры
- •Сравнительный анализ архитектур кс параллельного действия.
- •Архитектура вычислительных систем
- •Smp архитектура
- •Симметричные мультипроцессорные системы (smp)
- •Mpp архитектура
- •Массивно-параллельные системы (mpp)
- •Гибридная архитектура (numa)
- •Системы с неоднородным доступом к памяти (numa)
- •Pvp архитектура
- •Параллельные векторные системы (pvp)
- •1. Системы с конвейерной обработкой информации
- •1.2 Мультипроцессоры uma с много- ступенчатыми сетями
- •Мультипроцессоры numa
- •Мультипроцессор Sequent numa-q
- •Мультикомпьютеры с передачей сообщений
- •1. Общая характеристика кластерных систем.
- •2.Особенности построения кластерных систем.
- •Планирование работ в cow.
- •Без блокировки начала очереди (б); заполнение прямоугольника «процессоры-время» (в). Серым цветом показаны свободные процессоры
- •Общие сведения
- •Общие сведения
- •Логическая структура кластера
- •Логические функции физического узла.
- •Устройства памяти
- •Программное обеспечение
- •Элементы кластерных систем
- •1.1. Характеристики процессоров
- •Рассмотрим в начале процессор amd Opteron/Athlon 64.
- •Примеры промышленых разработок
- •Кластерные решения компании ibm
- •Диаграмма большого Linux-кластера.
- •Аппаратное обеспечение
- •Вычислительные узлы, выполняющие основные вычислительные задачи, для которых спроектирована система.
- •Программное обеспечение
- •Кластерные решения компании hp
- •Кластерные решения компании sgi
- •Производительность операций с плавающей точкой
- •Производительность памяти
- •Производительность системы ввода/вывода Linux
- •Масштабируемость технических приложений
- •Системное программное обеспечение
- •Архитектура san
- •Компоненты san
- •Примеры решений на основе san
- •San начального уровня
- •San между основным и резервным центром
- •Практические рекомендации
- •Построение san
- •Заключение
- •Принципы построения кластерных архитектур.
- •Оценки производительности параллельных систем
- •1) Имеет доступ к общей памяти;
- •2) Имеет общий доступ к устройствам ввода-вывода;
- •3) Управляется общей операционной системой, которая обеспечивает требуемое взаимодействие между процессорами и выполняемыми им программами как на аппаратном, так и на программном уровне.
- •4 Вероятность того, что в момент поступления очередной заявки все n процессоров заняты обслуживанием
- •Выбор коммутационного компонента.
- •Проблема сетевой перегрузки.
- •1. Обзор современных сетевых решении для построения кластеров.
- •1000-Мега битный вариант Ethernet
- •Организация внешней памяти
- •Эффективные кластерные решения
- •Концепция кластерных систем
- •Разделение на High Avalibility и High Performance системы
- •3. Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •6.Средства реализации High Performance кластеров
- •7.Средства распараллеливания
- •8.Средства реализации High Availability кластеров
- •9.Примеры проверенных решений
- •Архитектура san
- •Компоненты san
- •Примеры решений на основе san
- •San начального уровня
- •San между основным и резервным центром
- •Практические рекомендации
- •Построение san
- •Заключение
- •Symmetrix десять лет спустя
- •Матричная архитектура
- •Средства защиты данных
- •Ревизионизм и фон-неймановская архитектура
- •Литература
- •Связное программное обеспечение для мультикомпьютеров
- •1. Синхронная передача сообщений.
- •2. Буферная передача сообщений.
- •Планирование работ в cow
- •Средства распараллеливания
- •7.Средства распараллеливания
- •2. Кластерн ый вычислительн ый комплекс на основе интерфейса передачи сообщений
- •2.2 Программная реализация интерфейса передачи сообщений
- •2.3 Структура каталога mpich
- •2.4 «Устройства» mpich
- •2.5 Выполнение параллельной программы
- •2.6 Особенности выполнения программ на кластерах рабочих станций
- •2.7 Тестирование кластерного комплекса
- •Параллельная виртуальная машина
- •3 Кластерн ый вычислительн ый комплекс на основе пАраллельной виртуальной машины
- •3.1 Параллельная виртуальная машина
- •3.1.1 Общая характеристика
- •3.1.2 Гетерогенные вычислительные системы
- •3.1.3 Архитектура параллельной виртуальной машины
- •3.2 Настройка и запуск параллельной виртуальной машины
- •3.3 Структура каталога pvm
- •3.4 Тестирование параллельной виртуальной машины
- •На рисунке 3.2 представлена диаграмма, отображающая сравнение производительности коммуникационных библиотек mpi и pvm.
- •3.5 Сходства и различия pvm и mpi
- •4 . Кластерн ый вычислительн ый комплекса на основе программного пакета openMosix
- •4.1 Роль openMosix
- •4.2 Компоненты openMosix
- •4.2.1 Миграция процессов
- •4.2.2 Файловая система openMosix (oMfs)
- •4.3 Планирование кластера
- •4.4 Простая конфигурация
- •4.4.1 Синтаксис файла /etc/openmosix.Map
- •4.4.2 Автообнаружение
- •4. 5. Пользовательские утилиты администрирования openMosix
- •4. 6. Графические средства администрирования openMosix
- •4. 6.1 Использование openMosixView
- •4. 6.1.2 Окно конфигурации. Это окно появится после нажатия кнопки “cluster-node”.
- •4. 6.1.3 Окно advanced-execution. Если нужно запустить задания в кластере, то диалог "advanced execution" может сильно упростить эту задачу.
- •4.6.1.4 Командная строка. Можно указать дополнительные аргументы командной строки в поле ввода вверху окна. Аргументы приведены в таблице 9.2.
- •4. 6.2.2 Окно migrator. Этот диалог появляется, если кликнуть на каком-либо процессе из окна списка процессов.
- •4. 6.2.3 Управление удалёнными процессами. Этот диалог появляется при нажатии кнопки “manage procs from remote”
- •4.5.3 Использование openMosixcollector
- •4. 6.4 Использование openMosixanalyzer
- •4. 6.4. 1 Окно load-overview. Здесь отображается хронология нагрузки openMosix.
- •4. 6.4. 2 Статистическая информация об узле
- •4.5.4.3 Окно memory-overview. Здесь представляется обзор использования памяти (Memory-overview) в openMosixanalyzer.
- •4. 6.4.4 Окно openMosixhistory
- •4. 6.5 Использование openMosixmigmon
- •4.6 Список условных сокращений
- •Перечень ссылок
- •Общие сведения
- •2. Создание Windows-кластера
- •Суперкомпьютерная Программа "скиф"
- •Описание технических решений
- •Направления работ
- •Основные результаты
- •Кластер мгиу
- •Содержание
- •Понятие о кластере
- •Аппаратное обеспечение
- •Пропускная способность и латентность
- •1. Определение распределенной системы
- •2.1. Соединение пользователей с ресурсами
- •2.2. Прозрачность
- •Прозрачность в распределенных системах
- •2.3. Открытость
- •2.4. Масштабируемость
- •3.1. Мультипроцессоры
- •3.2. Гомогенные мультикомпьютерные системы
- •3.3. Гетерогенные мультикомпьютерные системы
- •4. Концепции программных решений рс
- •4.1. Распределенные операционные системы
- •4.2. Сетевые операционные системы
- •4.3. Программное обеспечение промежуточного уровня
- •5. Модель клиент-сервер рс
- •5.1. Клиенты и серверы
- •5.2. Разделение приложений по уровням
- •5.3. Варианты архитектуры клиент-сервер
- •Формы метакомпьютера
- •Настольный суперкомпьютер.
- •2. Интеллектуальный инструментальный комплекс.
- •Сетевой суперкомпьютер.
- •Проблемы создания метакомпьютера
- •Сегодняшняя архитектура метакомпьютерной среды
- •Взаимосвязь метакомпьютинга с общими проблемами развития системного по
- •5. Модель клиент-сервер рс
- •5.1. Клиенты и серверы
- •5.2. Разделение приложений по уровням
- •5.3. Варианты архитектуры клиент-сервер
- •Symmetrix десять лет спустя
- •Матричная архитектура
- •Средства защиты данных
- •Ревизионизм и фон-неймановская архитектура
- •Однородные вычислительные среды
- •Однокристальный ассоциативный процессор сам2000
- •Модели нейронных сетей
- •Модели инс
- •Оптимизационные системы.
- •Неуправляемые системы распознавания образов.
- •Системы feed forward.
- •Элементы нейрологики с позиции аппаратной реализации
- •Реализация нейронных сетей
- •Программные нейрокомпьютеры
- •Программно-аппаратные нейрокомпьютеры
- •Практическое использование инс
Практическое использование инс
К началу 90-х годов развитие ИНС и нейрокомпыотеров привело к появлению соответствующих коммерческих изделий.В 1988 г. объем этого рынка составлял 20 млн. долл., 1996 г. перевалил за 1 млрд. долл., а темпы его роста уступают лишь индустрии сотовой связи. Если в 1986-1987 годы существовали лишь единичные фирмы, которые специализировались в области разработок и производства ИНС, то к 1990 г. их число превысило сотню, а сейчас достигает нескольких сотен.
Основные продукты этих фирм предназначены для решения пользователем конкретных задач, для создания приложений, а также для обучения и образования. Таможенники используют нейронные сети для выявления пластиковых бомб и наркотиков, банкиры - для оценки кредитных рисков, финансисты -для предсказания изменения курса валюты, авиаторы - для автоматизации управления полетами. Вот лишь некоторые примеры.
Компания Nestor поставляет ИНС-системы для проверки подлинности подписей и чтения рукописных цифр с банковских чеков. На установление подлинности подписи с вероятностью более 95% достаточно двух-трех секунд.
Фирма HNC разработала систему для визуального контроля качества упаковки товаров с производительностью до 12 предметов в секунду, сети для управления станками с ЧПУ, производственными процессами в химической промышленности и машиностроении.
Нейронная сеть SNOOPE компании SAIC предназначена для обнаружения взрывчатки и наркотиков в багаже авиапассажиров по вызванному гамма-излучению. В международном аэропорту. Лос-Анджелеса она при 95%-ной вероятности обнаружения взрывчатки позволила снизить вероятность ложной тревоги до 2%, что примерно в три раза меньше, чем у альтернативных систем.
Одна из первых ИНС для управления воздушным транспортом фирмы Netrologic при испытаниях управляла посадкой пяти авиалайнеров в пяти аэропортах.
Сферы применения технологии нейронных сетей быстро расширяются. Тот факт, что нейросети в значительной мере отображают восприятие информации в живых организмах (и человека в том числе), дает основание считать, что ИНС уже в начале XXI века будут являться основным средством решения интеллектуальных задач,
Аппаратная реализация нейросетей на основе ДСП и ПЛИС.
Нейроускорители на базе сигнальных процессоров.
Выводы
Дискретная элементная база и интегральные схемы малой и средней интеграции позволяли изготовить процессор с произвольной архитектурой при существенном ограничении на общий объем используемого оборудования.
Для обеспечения высокой производительности было необходимо соответствующее количество регистров и функциональных устройств, однако требуемый для их создания объем электронных компонентов, паяных и разъемных соединений определялся надежностью создаваемого процессора, стоимостью и энергопотреблением.
В этих условиях конструкторы процессоров предложили разнообразные архитектуры, каждая из которых в своей проблемной области обеспечивала наивысшее значение показателя «производительность/стоимость».
Значительный рост степени интеграции при существенно меньшем росте количества выводов корпусов привел к ситуации, когда в одной БИС могло разместиться много процессорных элементов, однако их явно не хватало для создания полноценного SIMD-процессора.
Объединению совокупности таких интегральных схем в один процессор препятствовало малое число выводов, не позволявшее подсоединить к процессорному элементу память и создать эффективную сеть связи между элементами.
Особенности проектирования и изготовления СБИС, в том числе и микропроцессоров, делают экономически оправданным только их массовое производство, что практически исключило возможность создания специализированных кристаллов для многокристальных процессоров.
● Коль скоро микропроцессоры стали основной элементной базой, то единственное, что из них можно строить — параллельные вычислительные системы, образуемые путем объединения коммуникационной средой совокупности процессоров, блоков памяти и устройств ввода-вывода.
● Параллельные системы по назначению и используемой элементной базе можно разбить на четыре класса:
универсальные с фиксированной структурой, строящиеся из серийных универсальных микропроцессоров;
специализированные с фиксированной структурой, строящиеся из микропроцессоров, ориентированных на исполнение определенных вычислений;
универсальные с программируемой структурой, настраиваемые на аппаратурную реализацию исполняемых вычислений;
специализированные с программируемой структурой, настраиваемые на аппаратно-программную реализацию исполняемых вычислений.
Увеличение объема кэш-памяти на кристалле дает прирост производительности, но после достижения некоторого объема этот прирост существенно замедляется. Поэтому разумно использовать ресурс транзисторов кристалла для построения дополнительной совокупности функциональных устройств.
Дальнейшее повышение производительности микропроцессоров связывается сейчас со статическим и динамическим анализом кода с целью выявления параллелизма уровня программных сегментов с использованием информации о сегментах, предоставляемой процессору компилятором языка высокого уровня.
Исследования в данном направлении привели к разработке многопотоковой архитектуры, использующей совокупность регистровых файлов в процессоре. Переключение процессора на другой регистровый файл выполняется либо по наступлению некоторого события, вызывающего приостанов процессора (промах в кэш-память, обращение к оперативной памяти, наступление прерывания), либо принудительно.
В кристалл интегрируются функции, для исполнения которых обычно используются наборы микросхем. В кристалл интегрируются интерфейсы сетевых и телекоммуникационных систем, что позволяет без дополнительных адаптеров соединять микропроцессоры друг с другом и с различными сетями.
Ориентация разработчиков на создание систем с распределенной разделяемой памятью привела к интеграции в кристалл блока управления когерентностью многоуровневой памятью, доступ к блокам которой выполняется через интегрированную в тот же кристалл коммуникационную среду.
В дальнейшем можно ожидать появление кристаллов с несколькими векторно-конвейерными процессорами, образующими однокристальную систему с общей памятью. Такие кристаллы могут быть объединены в MPP-систему.
Конструирование принципиально новых устройств обработки информации – квантовых логических ячеек, оптических логических блоков – позволяет создать на основе технологии ГЭ квантовые компьютеры, использующие вместо электрического сигнала световой импульс. Быстродействие компьютеров при данных технологиях практически не будет иметь ограничений и может возрасти в несколько тысяч раз.
● Нанокомпьютер - это:
квантовый или механический компьютер нанометровых размеров с высокой производительностью;
компьютер, логические элементы которого имеют молекулярные размеры;
компьютер микроскопических размеров, разрабатываемый на основе нанотехнологий (Techtarget, whatis.techtarget.com/definition).
● С переходом на уровень нанотехнологий станет возможным снижение минимально допустимых размеров компьютера до субклеточного уровня. Плотность хранения информации в искусственных системах уже сейчас может превышать плотность информации, кодирующей наследственность человека. Способы представления информации в системах, созданных человеком, почти достигли физических пределов, установленных фундаментальными законами природы.
● Cогласно принципу Ландауэра, потеря одного бита информации ведет к выделению тепловой энергии, равной
E=kB*T* ln2,
где kB - постоянная Больцмана, T - температура процессора.
Суперкомпьютерные центры, расположенные на геостационарных орбитах с дешевым космическим холодом, оснащенные мощными информационными каналами связи с Землей, - новое направление развития IT-бизнеса в будущем.
В настоящее время весьма популярны идеи химического синтеза вычислительных наноструктур, а также их самосборки. Такие технологии привлекательны тем, что позволяют достичь высокой степени параллелизма, автоматического контроля качества и высокой производительности в таких малых пространственных масштабах, где использование технологий макромира невозможно или неэффективно.
● Нейман показал, что существует некоторая пороговая сложность автомата, начиная с которой самовоспроизводство возможно. Им также была высказана идея, что, начиная с некоторого более высокого уровня сложности такой процесс возможен с нарастанием сложности создаваемых систем. Нейман построил конкретную математическую модель самовоспроизводящейся структуры на основе клеточного автомата. В основе модели Неймана лежало представление о двумерной регулярной среде элементарных ячеек, обладающих конечным числом состояний и определенной функцией переходов.