
- •1 Задачи анализа;
- •2 Задачи синтеза;
- •3 Задачи идентификации.
- •Основные задачи теории кс
- •1. Задачи анализа;
- •2. Задачи синтеза;
- •3. Задачи идентификации.
- •2. Высокой интенсивностью взаимодействия и вытекающим отсюда требованием уменьшения времени ответа.
- •Функционирование кс
- •Основные задачи теории вычислительных систем
- •Общая характеристика методов теории вычислительных систем
- •3. Классификация вычислительных систем
- •Характеристики производительности и надежности кс
- •Характеристики надежности кс
- •1 Холодное резервирование. Работает только основной канал.
- •2 Нагруженный резерв. Включены оба канала (резервный канал занимается посторонними задачами). Время перехода на основную задачу меньше чем в холодном резерве.
- •Общая характеристика методов теории вычислительных систем
- •Характеристики производительности кс
- •1. Номинальная производительность ;
- •2. Комплексная производительность ;
- •3. Пакеты тестовых программ spec XX
- •Характеристики надежности кс
- •1 Холодное резервирование. Работает только основной канал.
- •2 Нагруженный резерв. Включены оба канала (резервный канал занимается посторонними задачами). Время перехода на основную задачу меньше чем в холодном резерве.
- •4) Указывается начальное состояние системы;
- •8) Находятся показатели качества вс на основе найденных вероятностей состояния системы.
- •Анализ надежности кс со сложной структурой
- •2.Расчет надежности кс
- •2. Для каждой вершины можно вычислить среднее количество попаданий вычислительного процесса в эту вершину по формуле
- •1. Разбить множество операторов на классы:
- •Модели вычислительных систем как систем массового обслуживания
- •1 Общие понятия и определения
- •Например m/m/1
- •2 Параметры систем массового обслуживания
- •Модели массового обслуживания вычислительных систем|
- •1. Представление вычислительной системы в виде стохастической сети
- •2. Потоки заявок
- •3. Длительность обслуживания заявок
- •Характеристики одноканальных смо
- •Многопроцессорные системы
- •5. Характеристики бесприоритетных дисциплин обслуживания
- •1) В порядке поступления (первой обслуживается заявка, поступившая раньше других);
- •2) В порядке, обратном порядку поступления заявок (первой обслуживается заявка, поступившая позже других);
- •3) Наугад, т. Е. Путем случайного выбора из очереди.
- •6. Характеристики дисциплины обслуживания с относительными приоритетами заявок
- •3.8. Характеристики дисциплин обслуживания со смешанными приоритетами
- •§ 3.9. Обслуживание заявок в групповом режиме
- •§ 3.10. Смешанный режим обслуживания заявок
- •§ 3.11. Диспетчирование на основе динамических приоритетов
- •§ 3.12. Оценка затрат на диспетчирование
- •1.Определяется интенсивность потока заявок I в смо Si из системы алгебраических уравнений
- •2.Вычисляются коэффициенты передач для каждой смо
- •3.Определяется среднее время обслуживания Ui заявки в смо Si :
- •6.Для моделирующей сети в целом характеристики п.5 определяются как
- •2.Расчет характеристик мультипроцессорной системы
- •1) Имеет доступ к общей памяти;
- •1.Средняя длина очереди заявок, ожидающих обслуживания в системе:
- •3. Среднее время пребывания заявок в системе :
- •Основные задачи теории кс
- •1. Задачи анализа;
- •2. Задачи синтеза;
- •3. Задачи идентификации.
- •1) С неограниченным временем пребывания заявок;
- •2) С относительными ограничениями на время пребывания заявок;
- •3) С абсолютными ограничениями на время пребывания заявок;
- •2.4. Контроллеры и сетевые комплексы ge Fanuc
- •Модели 311,313/323, 331
- •Коммуникационные возможности серии 90-30
- •2.4.3. Контроллеры VersaMax
- •2.4.4. Программное обеспечение
- •Общая характеристика протоколов и интерфейсов асу тп
- •2. Протоколы и интерфейсы нижнего уровня.
- •2. Основные технические характеристики контроллеров и программно-технических комплексов
- •Требования к корпоративной сети
- •2) Одновременное решение различных задач или частей одной задачи;
- •3) Конвейерная обработка информации.
- •1. Суть проблемы и основные понятия
- •1.1 Главные этапы распараллеливания задач
- •1.2 Сведения о вычислительных процессах
- •1.3 Распределенная обработка данных
- •1. Классификации архитектур параллельных вычислительных систем
- •1.1 Классификация Флинна
- •1. Процессоры
- •Память компьютерных систем
- •Простые коммутаторы
- •Простые коммутаторы с пространственным разделением
- •Составные коммутаторы
- •Коммутатор Клоза
- •Баньян-сети
- •Распределенные составные коммутаторы
- •Коммутация
- •Алгоритмы выбора маршрута
- •Граф межмодульных связей Convex Exemplar spp1000
- •Граф межмодульных связей мвс-100
- •3. Граф межмодульных связей мвс-1000
- •1. Построения коммуникационных сред на основе масштабируемого когерентного интерфейса sci
- •2. Коммуникационная среда myrinet
- •3. Коммуникационная среда Raceway
- •4. Коммуникационные среды на базе транспьютероподобных процессоров
- •1. Структура узла
- •2. Пакеты и свободные символы
- •3. Прием пакетов
- •4. Передача пакетов
- •5. Управление потоком
- •1. Структура адресного пространства
- •2. Регистры управления и состояния
- •3. Форматы пакетов
- •Когерентность кэш-памятей
- •1. Организация распределенной директории
- •2. Протокол когерентности
- •3. Алгоритм кэширования.
- •1 . Основные характеристики
- •1.2. Происхождение
- •1.3. Механизм когерентности
- •1. 4. Предназначение
- •1. 5. Структура коммуникационных сред на базе sci
- •1. 6. Физическая реализация
- •1. 7. Обозначение каналов
- •2. Реализация коммуникационной среды
- •2.1. На структурном уровне коммуникационная среда состоит из трех компонентов, как показано на рис. 2.1:
- •Масштабируемый когерентный интерфейс sci
- •Сетевая технология Myrinet
- •Коммуникационная среда Raceway
- •Коммуникационные среды на базе транспьютероподобных процессоров
- •1.Информационные модели
- •1.2. Мультипроцессоры
- •1.3. Мультикомпьютеры
- •Сравнительный анализ архитектур кс параллельного действия.
- •Архитектура вычислительных систем
- •Smp архитектура
- •Симметричные мультипроцессорные системы (smp)
- •Mpp архитектура
- •Массивно-параллельные системы (mpp)
- •Гибридная архитектура (numa)
- •Системы с неоднородным доступом к памяти (numa)
- •Pvp архитектура
- •Параллельные векторные системы (pvp)
- •1. Системы с конвейерной обработкой информации
- •1.2 Мультипроцессоры uma с много- ступенчатыми сетями
- •Мультипроцессоры numa
- •Мультипроцессор Sequent numa-q
- •Мультикомпьютеры с передачей сообщений
- •1. Общая характеристика кластерных систем.
- •2.Особенности построения кластерных систем.
- •Планирование работ в cow.
- •Без блокировки начала очереди (б); заполнение прямоугольника «процессоры-время» (в). Серым цветом показаны свободные процессоры
- •Общие сведения
- •Общие сведения
- •Логическая структура кластера
- •Логические функции физического узла.
- •Устройства памяти
- •Программное обеспечение
- •Элементы кластерных систем
- •1.1. Характеристики процессоров
- •Рассмотрим в начале процессор amd Opteron/Athlon 64.
- •Примеры промышленых разработок
- •Кластерные решения компании ibm
- •Диаграмма большого Linux-кластера.
- •Аппаратное обеспечение
- •Вычислительные узлы, выполняющие основные вычислительные задачи, для которых спроектирована система.
- •Программное обеспечение
- •Кластерные решения компании hp
- •Кластерные решения компании sgi
- •Производительность операций с плавающей точкой
- •Производительность памяти
- •Производительность системы ввода/вывода Linux
- •Масштабируемость технических приложений
- •Системное программное обеспечение
- •Архитектура san
- •Компоненты san
- •Примеры решений на основе san
- •San начального уровня
- •San между основным и резервным центром
- •Практические рекомендации
- •Построение san
- •Заключение
- •Принципы построения кластерных архитектур.
- •Оценки производительности параллельных систем
- •1) Имеет доступ к общей памяти;
- •2) Имеет общий доступ к устройствам ввода-вывода;
- •3) Управляется общей операционной системой, которая обеспечивает требуемое взаимодействие между процессорами и выполняемыми им программами как на аппаратном, так и на программном уровне.
- •4 Вероятность того, что в момент поступления очередной заявки все n процессоров заняты обслуживанием
- •Выбор коммутационного компонента.
- •Проблема сетевой перегрузки.
- •1. Обзор современных сетевых решении для построения кластеров.
- •1000-Мега битный вариант Ethernet
- •Организация внешней памяти
- •Эффективные кластерные решения
- •Концепция кластерных систем
- •Разделение на High Avalibility и High Performance системы
- •3. Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •6.Средства реализации High Performance кластеров
- •7.Средства распараллеливания
- •8.Средства реализации High Availability кластеров
- •9.Примеры проверенных решений
- •Архитектура san
- •Компоненты san
- •Примеры решений на основе san
- •San начального уровня
- •San между основным и резервным центром
- •Практические рекомендации
- •Построение san
- •Заключение
- •Symmetrix десять лет спустя
- •Матричная архитектура
- •Средства защиты данных
- •Ревизионизм и фон-неймановская архитектура
- •Литература
- •Связное программное обеспечение для мультикомпьютеров
- •1. Синхронная передача сообщений.
- •2. Буферная передача сообщений.
- •Планирование работ в cow
- •Средства распараллеливания
- •7.Средства распараллеливания
- •2. Кластерн ый вычислительн ый комплекс на основе интерфейса передачи сообщений
- •2.2 Программная реализация интерфейса передачи сообщений
- •2.3 Структура каталога mpich
- •2.4 «Устройства» mpich
- •2.5 Выполнение параллельной программы
- •2.6 Особенности выполнения программ на кластерах рабочих станций
- •2.7 Тестирование кластерного комплекса
- •Параллельная виртуальная машина
- •3 Кластерн ый вычислительн ый комплекс на основе пАраллельной виртуальной машины
- •3.1 Параллельная виртуальная машина
- •3.1.1 Общая характеристика
- •3.1.2 Гетерогенные вычислительные системы
- •3.1.3 Архитектура параллельной виртуальной машины
- •3.2 Настройка и запуск параллельной виртуальной машины
- •3.3 Структура каталога pvm
- •3.4 Тестирование параллельной виртуальной машины
- •На рисунке 3.2 представлена диаграмма, отображающая сравнение производительности коммуникационных библиотек mpi и pvm.
- •3.5 Сходства и различия pvm и mpi
- •4 . Кластерн ый вычислительн ый комплекса на основе программного пакета openMosix
- •4.1 Роль openMosix
- •4.2 Компоненты openMosix
- •4.2.1 Миграция процессов
- •4.2.2 Файловая система openMosix (oMfs)
- •4.3 Планирование кластера
- •4.4 Простая конфигурация
- •4.4.1 Синтаксис файла /etc/openmosix.Map
- •4.4.2 Автообнаружение
- •4. 5. Пользовательские утилиты администрирования openMosix
- •4. 6. Графические средства администрирования openMosix
- •4. 6.1 Использование openMosixView
- •4. 6.1.2 Окно конфигурации. Это окно появится после нажатия кнопки “cluster-node”.
- •4. 6.1.3 Окно advanced-execution. Если нужно запустить задания в кластере, то диалог "advanced execution" может сильно упростить эту задачу.
- •4.6.1.4 Командная строка. Можно указать дополнительные аргументы командной строки в поле ввода вверху окна. Аргументы приведены в таблице 9.2.
- •4. 6.2.2 Окно migrator. Этот диалог появляется, если кликнуть на каком-либо процессе из окна списка процессов.
- •4. 6.2.3 Управление удалёнными процессами. Этот диалог появляется при нажатии кнопки “manage procs from remote”
- •4.5.3 Использование openMosixcollector
- •4. 6.4 Использование openMosixanalyzer
- •4. 6.4. 1 Окно load-overview. Здесь отображается хронология нагрузки openMosix.
- •4. 6.4. 2 Статистическая информация об узле
- •4.5.4.3 Окно memory-overview. Здесь представляется обзор использования памяти (Memory-overview) в openMosixanalyzer.
- •4. 6.4.4 Окно openMosixhistory
- •4. 6.5 Использование openMosixmigmon
- •4.6 Список условных сокращений
- •Перечень ссылок
- •Общие сведения
- •2. Создание Windows-кластера
- •Суперкомпьютерная Программа "скиф"
- •Описание технических решений
- •Направления работ
- •Основные результаты
- •Кластер мгиу
- •Содержание
- •Понятие о кластере
- •Аппаратное обеспечение
- •Пропускная способность и латентность
- •1. Определение распределенной системы
- •2.1. Соединение пользователей с ресурсами
- •2.2. Прозрачность
- •Прозрачность в распределенных системах
- •2.3. Открытость
- •2.4. Масштабируемость
- •3.1. Мультипроцессоры
- •3.2. Гомогенные мультикомпьютерные системы
- •3.3. Гетерогенные мультикомпьютерные системы
- •4. Концепции программных решений рс
- •4.1. Распределенные операционные системы
- •4.2. Сетевые операционные системы
- •4.3. Программное обеспечение промежуточного уровня
- •5. Модель клиент-сервер рс
- •5.1. Клиенты и серверы
- •5.2. Разделение приложений по уровням
- •5.3. Варианты архитектуры клиент-сервер
- •Формы метакомпьютера
- •Настольный суперкомпьютер.
- •2. Интеллектуальный инструментальный комплекс.
- •Сетевой суперкомпьютер.
- •Проблемы создания метакомпьютера
- •Сегодняшняя архитектура метакомпьютерной среды
- •Взаимосвязь метакомпьютинга с общими проблемами развития системного по
- •5. Модель клиент-сервер рс
- •5.1. Клиенты и серверы
- •5.2. Разделение приложений по уровням
- •5.3. Варианты архитектуры клиент-сервер
- •Symmetrix десять лет спустя
- •Матричная архитектура
- •Средства защиты данных
- •Ревизионизм и фон-неймановская архитектура
- •Однородные вычислительные среды
- •Однокристальный ассоциативный процессор сам2000
- •Модели нейронных сетей
- •Модели инс
- •Оптимизационные системы.
- •Неуправляемые системы распознавания образов.
- •Системы feed forward.
- •Элементы нейрологики с позиции аппаратной реализации
- •Реализация нейронных сетей
- •Программные нейрокомпьютеры
- •Программно-аппаратные нейрокомпьютеры
- •Практическое использование инс
5.3. Варианты архитектуры клиент-сервер
Разделение на три логических уровня, обсуждавшееся в предыдущем пункте, наводит на мысль о множестве вариантов физического распределения по отдельным компьютерам приложений в модели клиент-сервер. Простейшая организация предполагает наличие всего двух типов машин.
Клиентские машины, на которых имеются программы, реализующие только пользовательский интерфейс или его часть.
Серверы, реализующие все остальное, то есть уровни обработки и данных.
Проблема подобной организации состоит в том, что на самом деле система не является распределенной: все происходит на сервере, а клиент представляет собой не что иное, как простой терминал. Существует также множество других возможностей, наиболее употребительные из них мы сейчас рассмотрим.
Многозвенные архитектуры
Один из подходов к организации клиентов и серверов — это распределение программ, находящихся на уровне приложений, описанном в предыдущем пункте, по различным машинам, как показано на рис. 1.20 . В качестве первого шага мы рассмотрим разделение на два типа машин: на клиенты и на серверы, что приведет нас к физически двухзвенной архитектуре (physically two-tiered architecture).
Один из возможных вариантов организации — поместить на клиентскую сторону только терминальную часть пользовательского интерфейса, как показано на рис. 1.20, а, позволив приложению удаленно контролировать представление данных.
Альтернативой этому подходу будет передача клиенту всей работы с пользовательским интерфейсом (рис. 1.20, б). В обоих случаях мы отделяем от приложения графический внешний интерфейс, связанный с остальной частью приложения (находящейся на сервере) посредством специфичного для данного приложения протокола. В подобной модели внешний интерфейс делает только то, что необходимо для предоставления интерфейса приложения.
Продолжим линию наших рассуждений. Мы можем перенести во внешний интерфейс часть нашего приложения, как показано на рис. 1.20, в. Примером может быть вариант, когда приложение создает форму непосредственно перед ее заполнением. Внешний интерфейс затем проверяет правильность и полноту заполнения формы и при необходимости взаимодействует с пользователем. Другим примером организации системы по образцу, представленному на рис. 1.20, в, может служить текстовый процессор, в котором базовые функции редактирования осуществляются на стороне клиента с локально каптируемыми или находящимися в памяти данными, а специальная обработка, такая как проверка орфографии или грамматики, выполняется на стороне сервера.
Во многих системах клиент-сервер популярна организация, представленная на рис. 1.20, г и д. Эти типы организации применяются в том случае, когда клиентская машина — персональный компьютер или рабочая станция — соединена сетью с распределенной файловой системой или базой данных.
Большая часть приложения работает на клиентской машине, а все операции с файлами или базой данных передаются на сервер. Рисунок 1.20, д отражает ситуацию, когда часть данных содержится на локальном диске клиента. Так, например, при работе в Интернете клиент может постепенно создать на локальном диске огромный кэш наиболее часто посещаемых web-страниц.
Рассматривая только клиенты и серверы, мы упускаем тот момент, что серверу иногда может понадобиться работать в качестве клиента. Такая ситуация, отраженная на рис. 1.21, приводит нас к физически трехзвенной архитектуре (physically three-tiered architecture).
В подобной архитектуре программы, составляющие часть уровня обработки, выносятся на отдельный сервер, но дополнительно могут частично находиться и на машинах клиентов и серверов. Типичный пример трехзвенной архитектуры — обработка транзакций. В этом случае отдельный процесс — монитор транзакций — координирует все транзакции, возможно, на нескольких серверах данных.
Современные варианты архитектуры
Многозвенные архитектуры клиент-сервер являются прямым продолжением разделения приложений на уровни пользовательского интерфейса, компонентов обработки и данных. Различные звенья взаимодействуют в соответствии с логической организацией приложения. Во множестве бизнес-приложений распределенная обработка эквивалентна организации многозвенной архитектуры приложений клиент-сервер. Мы будем называть такой тип распределения вертикальным распределением (vertical distribution). Характеристической особенностью вертикального распределения является то, что оно достигается размещением логически различных компонентов на разных машинах.
Это понятие связано с концепцией вертикального разбиения (vertical fragmentation), используемой в распределенных реляционных базах данных, где под этим термином понимается разбиение по столбцам таблиц для их хранения на различных машинах .
Однако вертикальное распределение — это лишь один из возможных способов организации приложений клиент-сервер, причем во многих случаях наименее интересный.
В современных архитектурах распределение на клиенты и серверы происходит способом, известным как горизонтальное распределение (horizontal distribution). При таком типе распределения клиент или сервер может содержать физически разделенные части логически однородного модуля, причем работа с каждой из частей может происходить независимо. Это делается для выравнивания загрузки.
В качестве распространенного примера горизонтального распределения рассмотрим web-сервер, реплицированный на несколько машин локальной сети, как показано на рис. 1.22. На каждом из серверов содержится один и тот же набор web-страниц, и всякий раз, когда одна из web-страниц обновляется, ее копии незамедлительно рассылаются на все серверы. Сервер, которому будет передан приходящий запрос, выбирается по правилу «карусели» (round-robin). Эта форма горизонтального распределения весьма успешно используется для выравнивания нагрузки на серверы популярных web-сайтов.
Таким же образом, хотя и менее очевидно, могут быть распределены и клиенты. Для несложного приложения, предназначенного для коллективной работы, мы можем не иметь сервера вообще. В этом случае мы обычно говорим об одноранговом распределении (peer-to-peer distribution). Подобное происходит, например, если пользователь хочет связаться с другим пользователем. Оба они должны запустить одно и то же приложение, чтобы начать сеанс. Третий клиент может общаться с одним из них или обоими, для чего ему нужно запустить то же самое приложение.
Метакомпьютинг:вычислительная ифраструктура будущего
Проекты_метакомпьютинга. Тенденции развития компьютерной индустрии определяются разнообразными факторами: научными открытиями, новыми промышленными технологиями, конъюктурой на финансовых рынках. , главной движущей силой которых выступают высокопроизводительные приложения, то есть такие, для которых требуются компьютерные архитектуры с пиковыми на сегодняшний день техническими характеристиками, с наивысшей пропускной способностью и которые вызваны к жизни самыми трудными, но и наиболее значимыми проблемами науки и инженерии.
Есть все основания полагать — и это стимулирует всеобщий интерес, — что те существенные продвижения, которые уже были сделаны, и те ожидания, которые возлагаются на будущее, связаны не только собственно с областью высокопроизводительных вычислений. Предлагаемые подходы способны оказать глубокое влияние на компьютерную индустрию в целом, включая и то, что принято называть массовым рынком.
Направление, о котором идет речь, можно обозначить как использование компьютерных сетей для создания распределенной вычислительной инфраструктуры национального и мирового масштаба. На сегодня сети доказали беспрецендентную практическую полезность, выступая как средство глобальной доставки различных форм информации. Однако потециал сетей раскрыт не полностью: они могут стать еще и средством организации вычислений следующего поколения.
Что представляет собой Internet? Это множество узлов с собственными процессорами, оперативной и внешней памятью, устройствами ввода/вывода. Узлы соединены друг с другом коммутационным оборудованием и линиями передачи данных. Такая конструкция весьма напоминает многопроцессорную систему, в которой роль магистральных шин выполняет Сеть.
Цель заключается в том, чтобы превратить аналогии в реальность, то есть стереть барьеры между разнородными, пространственно распределенными вычислительными системами, образовав сверхкомпьютер или метакомпьютер, который для пользователей и программистов выступал бы как единая вычислительная среда, доступная непосредственно с рабочего места (ПК или рабочей станции).
Центральное понятие метакомпьютера можно определить как метафору виртуального компьютера, динамически организующегося из географически распределенных ресурсов, соединенных высокоскоростными сетями передачи данных (рис.1). Отдельные установки являются составными частями метакомпьютера и в то же время служат точками подключения пользователей.
Необходимо подчеркнуть принципиальную разницу метакомпьютерного подхода и сегодняшних программных средств удаленного доступа.
В метакомпьютере этот доступ прозрачен, то есть пользователь имеет полную иллюзию использования одной, но гораздо более мощной, чем та, что стоит на его столе, машины и может с ней работать в рамках той же модели, которая принята на его персональном вычислителе.
Прежде всего имеет смысл остановиться на вопросе: зачем может быть нужна такая среда? Как уже говорилось, непосредственные потребности исходят от высокопроизводительных приложений.
В различных прикладных областях (космологии, гидрологии окружающей среды, молекулярной биологии и т.д.) поставлены весьма важные задачи, характеризующиеся, например , следующими требованиями к компьютерным ресурсам:
— 0.2 — 20 Tflops процессорной мощности; — 100 — 200 GB оперативной памяти; — 1— 2 TB дисковой памяти; — 0.2 — 0.5 GB/sec ширина полосы пропускания ввода/вывода.
Нижняя граница таких запросов — это уникальные архитектуры типа SGI/CRAY Origin с тысячами
процессоров.
С другой стороны суммарный объем ресурсов в достаточно большом фрагменте Сети далеко превосходит эти цифры, вопрос в том, как эти ресурсы объединить и дать в руки реальному потребителю.
Такая постановка очень серьезно воспринимается во всем мире и в первую очередь в Соединенных Штатах. Здесь роль организующего начала взял на себя фонд Национальный научный фонд NSF — — National Science Foundation. Для NSF проект вычислительной сетевой среды стал естественным продолжением предыдущей общенациональной программы создания суперкомпьютерных центров, начатой в 1985 году и завершившейся в сентябре 1997-CТРАТЕГИЧЕСКАЯ КОМПЬЮТЕРНАЯ ИНИЦИАТИВА.
В результате суперкомпьютерные мощности стали доступны практически всем заинтересованным исследователям, произошла быстрая эволюция архитектур: от векторных систем (PVP) к машинам с массовым параллелизмом (MPP) и далее к машинам с симметричным мультипроцессированием на базе разделяемой памяти (SMP). Кстати говоря, опыт этой программы показал, насколько неверно представление, что суперкомпьютеры — это экзотика, и даже в научном мире они не найдут большого применения.
После того как в 1992 году в строй ввели 512 — процессорную CM-5, количество проектов Национального центра суперкомпьютерных приложений (National Center for Supercomputing Applicaions — NCSA), потребляющих свыше 1000 процессорных часов в год (в единицах CRAY X-MP), увеличилось с 10 до 100 (рис.2). Желающие есть, были бы возможности.
На следующий же день (1 октября 1997) по окончании Суперкомпьютерной программы стартовала новая — Partnership for Advanced Computational Infrastructure (PACI) (рис.3).
Она выполняется сразу двумя крупными научными объединениями: National Computational Science Aliance (далее Aliance) и National Partnership for Advanced Computational Infrastructure (NPACI) с суммарным финансированием в 340 миллионов долларов, осуществляемым NSF, DARPA, NASA, Министерством обороны (программа модернизации).
План Aliance ставит задачу (и за истекший период она достаточно успешно реализуется) создания Национальной Технологической Сети GRID, которая способна открыть доступ с рабочих мест к самой большой из когда—либо собранных вычислительных сред для решения сложнейших научных и инженерных задач.
Термин GRID используется для обозначения вычислительной среды по аналогии с электрической сетью: включение в GRID пользователей должно быть столь же легким, как и включение бытовых приборов.
Имея штаб-квартиру в NCSA при Университете штата Иллинойс, Aliance объединяет исследователей из более чем 50 университетов, национальных лабораторий и промышленных организаций. Структуру проекта опрелеляют три главных направления (команды) — Новейшей техники (Advanced Hardware), Прикладных технологий (Application Technology) и Системных технологий (Enabling Technology). Включение в проект команды AT дает возможность двум другим отталкиваться от конкретных потребностей реальных задач, а также опробовать собственные решения на практике, так что GRID существует в виде постоянно действующего и развивающегося прототипа.