
- •1 Задачи анализа;
- •2 Задачи синтеза;
- •3 Задачи идентификации.
- •Основные задачи теории кс
- •1. Задачи анализа;
- •2. Задачи синтеза;
- •3. Задачи идентификации.
- •2. Высокой интенсивностью взаимодействия и вытекающим отсюда требованием уменьшения времени ответа.
- •Функционирование кс
- •Основные задачи теории вычислительных систем
- •Общая характеристика методов теории вычислительных систем
- •3. Классификация вычислительных систем
- •Характеристики производительности и надежности кс
- •Характеристики надежности кс
- •1 Холодное резервирование. Работает только основной канал.
- •2 Нагруженный резерв. Включены оба канала (резервный канал занимается посторонними задачами). Время перехода на основную задачу меньше чем в холодном резерве.
- •Общая характеристика методов теории вычислительных систем
- •Характеристики производительности кс
- •1. Номинальная производительность ;
- •2. Комплексная производительность ;
- •3. Пакеты тестовых программ spec XX
- •Характеристики надежности кс
- •1 Холодное резервирование. Работает только основной канал.
- •2 Нагруженный резерв. Включены оба канала (резервный канал занимается посторонними задачами). Время перехода на основную задачу меньше чем в холодном резерве.
- •4) Указывается начальное состояние системы;
- •8) Находятся показатели качества вс на основе найденных вероятностей состояния системы.
- •Анализ надежности кс со сложной структурой
- •2.Расчет надежности кс
- •2. Для каждой вершины можно вычислить среднее количество попаданий вычислительного процесса в эту вершину по формуле
- •1. Разбить множество операторов на классы:
- •Модели вычислительных систем как систем массового обслуживания
- •1 Общие понятия и определения
- •Например m/m/1
- •2 Параметры систем массового обслуживания
- •Модели массового обслуживания вычислительных систем|
- •1. Представление вычислительной системы в виде стохастической сети
- •2. Потоки заявок
- •3. Длительность обслуживания заявок
- •Характеристики одноканальных смо
- •Многопроцессорные системы
- •5. Характеристики бесприоритетных дисциплин обслуживания
- •1) В порядке поступления (первой обслуживается заявка, поступившая раньше других);
- •2) В порядке, обратном порядку поступления заявок (первой обслуживается заявка, поступившая позже других);
- •3) Наугад, т. Е. Путем случайного выбора из очереди.
- •6. Характеристики дисциплины обслуживания с относительными приоритетами заявок
- •3.8. Характеристики дисциплин обслуживания со смешанными приоритетами
- •§ 3.9. Обслуживание заявок в групповом режиме
- •§ 3.10. Смешанный режим обслуживания заявок
- •§ 3.11. Диспетчирование на основе динамических приоритетов
- •§ 3.12. Оценка затрат на диспетчирование
- •1.Определяется интенсивность потока заявок I в смо Si из системы алгебраических уравнений
- •2.Вычисляются коэффициенты передач для каждой смо
- •3.Определяется среднее время обслуживания Ui заявки в смо Si :
- •6.Для моделирующей сети в целом характеристики п.5 определяются как
- •2.Расчет характеристик мультипроцессорной системы
- •1) Имеет доступ к общей памяти;
- •1.Средняя длина очереди заявок, ожидающих обслуживания в системе:
- •3. Среднее время пребывания заявок в системе :
- •Основные задачи теории кс
- •1. Задачи анализа;
- •2. Задачи синтеза;
- •3. Задачи идентификации.
- •1) С неограниченным временем пребывания заявок;
- •2) С относительными ограничениями на время пребывания заявок;
- •3) С абсолютными ограничениями на время пребывания заявок;
- •2.4. Контроллеры и сетевые комплексы ge Fanuc
- •Модели 311,313/323, 331
- •Коммуникационные возможности серии 90-30
- •2.4.3. Контроллеры VersaMax
- •2.4.4. Программное обеспечение
- •Общая характеристика протоколов и интерфейсов асу тп
- •2. Протоколы и интерфейсы нижнего уровня.
- •2. Основные технические характеристики контроллеров и программно-технических комплексов
- •Требования к корпоративной сети
- •2) Одновременное решение различных задач или частей одной задачи;
- •3) Конвейерная обработка информации.
- •1. Суть проблемы и основные понятия
- •1.1 Главные этапы распараллеливания задач
- •1.2 Сведения о вычислительных процессах
- •1.3 Распределенная обработка данных
- •1. Классификации архитектур параллельных вычислительных систем
- •1.1 Классификация Флинна
- •1. Процессоры
- •Память компьютерных систем
- •Простые коммутаторы
- •Простые коммутаторы с пространственным разделением
- •Составные коммутаторы
- •Коммутатор Клоза
- •Баньян-сети
- •Распределенные составные коммутаторы
- •Коммутация
- •Алгоритмы выбора маршрута
- •Граф межмодульных связей Convex Exemplar spp1000
- •Граф межмодульных связей мвс-100
- •3. Граф межмодульных связей мвс-1000
- •1. Построения коммуникационных сред на основе масштабируемого когерентного интерфейса sci
- •2. Коммуникационная среда myrinet
- •3. Коммуникационная среда Raceway
- •4. Коммуникационные среды на базе транспьютероподобных процессоров
- •1. Структура узла
- •2. Пакеты и свободные символы
- •3. Прием пакетов
- •4. Передача пакетов
- •5. Управление потоком
- •1. Структура адресного пространства
- •2. Регистры управления и состояния
- •3. Форматы пакетов
- •Когерентность кэш-памятей
- •1. Организация распределенной директории
- •2. Протокол когерентности
- •3. Алгоритм кэширования.
- •1 . Основные характеристики
- •1.2. Происхождение
- •1.3. Механизм когерентности
- •1. 4. Предназначение
- •1. 5. Структура коммуникационных сред на базе sci
- •1. 6. Физическая реализация
- •1. 7. Обозначение каналов
- •2. Реализация коммуникационной среды
- •2.1. На структурном уровне коммуникационная среда состоит из трех компонентов, как показано на рис. 2.1:
- •Масштабируемый когерентный интерфейс sci
- •Сетевая технология Myrinet
- •Коммуникационная среда Raceway
- •Коммуникационные среды на базе транспьютероподобных процессоров
- •1.Информационные модели
- •1.2. Мультипроцессоры
- •1.3. Мультикомпьютеры
- •Сравнительный анализ архитектур кс параллельного действия.
- •Архитектура вычислительных систем
- •Smp архитектура
- •Симметричные мультипроцессорные системы (smp)
- •Mpp архитектура
- •Массивно-параллельные системы (mpp)
- •Гибридная архитектура (numa)
- •Системы с неоднородным доступом к памяти (numa)
- •Pvp архитектура
- •Параллельные векторные системы (pvp)
- •1. Системы с конвейерной обработкой информации
- •1.2 Мультипроцессоры uma с много- ступенчатыми сетями
- •Мультипроцессоры numa
- •Мультипроцессор Sequent numa-q
- •Мультикомпьютеры с передачей сообщений
- •1. Общая характеристика кластерных систем.
- •2.Особенности построения кластерных систем.
- •Планирование работ в cow.
- •Без блокировки начала очереди (б); заполнение прямоугольника «процессоры-время» (в). Серым цветом показаны свободные процессоры
- •Общие сведения
- •Общие сведения
- •Логическая структура кластера
- •Логические функции физического узла.
- •Устройства памяти
- •Программное обеспечение
- •Элементы кластерных систем
- •1.1. Характеристики процессоров
- •Рассмотрим в начале процессор amd Opteron/Athlon 64.
- •Примеры промышленых разработок
- •Кластерные решения компании ibm
- •Диаграмма большого Linux-кластера.
- •Аппаратное обеспечение
- •Вычислительные узлы, выполняющие основные вычислительные задачи, для которых спроектирована система.
- •Программное обеспечение
- •Кластерные решения компании hp
- •Кластерные решения компании sgi
- •Производительность операций с плавающей точкой
- •Производительность памяти
- •Производительность системы ввода/вывода Linux
- •Масштабируемость технических приложений
- •Системное программное обеспечение
- •Архитектура san
- •Компоненты san
- •Примеры решений на основе san
- •San начального уровня
- •San между основным и резервным центром
- •Практические рекомендации
- •Построение san
- •Заключение
- •Принципы построения кластерных архитектур.
- •Оценки производительности параллельных систем
- •1) Имеет доступ к общей памяти;
- •2) Имеет общий доступ к устройствам ввода-вывода;
- •3) Управляется общей операционной системой, которая обеспечивает требуемое взаимодействие между процессорами и выполняемыми им программами как на аппаратном, так и на программном уровне.
- •4 Вероятность того, что в момент поступления очередной заявки все n процессоров заняты обслуживанием
- •Выбор коммутационного компонента.
- •Проблема сетевой перегрузки.
- •1. Обзор современных сетевых решении для построения кластеров.
- •1000-Мега битный вариант Ethernet
- •Организация внешней памяти
- •Эффективные кластерные решения
- •Концепция кластерных систем
- •Разделение на High Avalibility и High Performance системы
- •3. Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •6.Средства реализации High Performance кластеров
- •7.Средства распараллеливания
- •8.Средства реализации High Availability кластеров
- •9.Примеры проверенных решений
- •Архитектура san
- •Компоненты san
- •Примеры решений на основе san
- •San начального уровня
- •San между основным и резервным центром
- •Практические рекомендации
- •Построение san
- •Заключение
- •Symmetrix десять лет спустя
- •Матричная архитектура
- •Средства защиты данных
- •Ревизионизм и фон-неймановская архитектура
- •Литература
- •Связное программное обеспечение для мультикомпьютеров
- •1. Синхронная передача сообщений.
- •2. Буферная передача сообщений.
- •Планирование работ в cow
- •Средства распараллеливания
- •7.Средства распараллеливания
- •2. Кластерн ый вычислительн ый комплекс на основе интерфейса передачи сообщений
- •2.2 Программная реализация интерфейса передачи сообщений
- •2.3 Структура каталога mpich
- •2.4 «Устройства» mpich
- •2.5 Выполнение параллельной программы
- •2.6 Особенности выполнения программ на кластерах рабочих станций
- •2.7 Тестирование кластерного комплекса
- •Параллельная виртуальная машина
- •3 Кластерн ый вычислительн ый комплекс на основе пАраллельной виртуальной машины
- •3.1 Параллельная виртуальная машина
- •3.1.1 Общая характеристика
- •3.1.2 Гетерогенные вычислительные системы
- •3.1.3 Архитектура параллельной виртуальной машины
- •3.2 Настройка и запуск параллельной виртуальной машины
- •3.3 Структура каталога pvm
- •3.4 Тестирование параллельной виртуальной машины
- •На рисунке 3.2 представлена диаграмма, отображающая сравнение производительности коммуникационных библиотек mpi и pvm.
- •3.5 Сходства и различия pvm и mpi
- •4 . Кластерн ый вычислительн ый комплекса на основе программного пакета openMosix
- •4.1 Роль openMosix
- •4.2 Компоненты openMosix
- •4.2.1 Миграция процессов
- •4.2.2 Файловая система openMosix (oMfs)
- •4.3 Планирование кластера
- •4.4 Простая конфигурация
- •4.4.1 Синтаксис файла /etc/openmosix.Map
- •4.4.2 Автообнаружение
- •4. 5. Пользовательские утилиты администрирования openMosix
- •4. 6. Графические средства администрирования openMosix
- •4. 6.1 Использование openMosixView
- •4. 6.1.2 Окно конфигурации. Это окно появится после нажатия кнопки “cluster-node”.
- •4. 6.1.3 Окно advanced-execution. Если нужно запустить задания в кластере, то диалог "advanced execution" может сильно упростить эту задачу.
- •4.6.1.4 Командная строка. Можно указать дополнительные аргументы командной строки в поле ввода вверху окна. Аргументы приведены в таблице 9.2.
- •4. 6.2.2 Окно migrator. Этот диалог появляется, если кликнуть на каком-либо процессе из окна списка процессов.
- •4. 6.2.3 Управление удалёнными процессами. Этот диалог появляется при нажатии кнопки “manage procs from remote”
- •4.5.3 Использование openMosixcollector
- •4. 6.4 Использование openMosixanalyzer
- •4. 6.4. 1 Окно load-overview. Здесь отображается хронология нагрузки openMosix.
- •4. 6.4. 2 Статистическая информация об узле
- •4.5.4.3 Окно memory-overview. Здесь представляется обзор использования памяти (Memory-overview) в openMosixanalyzer.
- •4. 6.4.4 Окно openMosixhistory
- •4. 6.5 Использование openMosixmigmon
- •4.6 Список условных сокращений
- •Перечень ссылок
- •Общие сведения
- •2. Создание Windows-кластера
- •Суперкомпьютерная Программа "скиф"
- •Описание технических решений
- •Направления работ
- •Основные результаты
- •Кластер мгиу
- •Содержание
- •Понятие о кластере
- •Аппаратное обеспечение
- •Пропускная способность и латентность
- •1. Определение распределенной системы
- •2.1. Соединение пользователей с ресурсами
- •2.2. Прозрачность
- •Прозрачность в распределенных системах
- •2.3. Открытость
- •2.4. Масштабируемость
- •3.1. Мультипроцессоры
- •3.2. Гомогенные мультикомпьютерные системы
- •3.3. Гетерогенные мультикомпьютерные системы
- •4. Концепции программных решений рс
- •4.1. Распределенные операционные системы
- •4.2. Сетевые операционные системы
- •4.3. Программное обеспечение промежуточного уровня
- •5. Модель клиент-сервер рс
- •5.1. Клиенты и серверы
- •5.2. Разделение приложений по уровням
- •5.3. Варианты архитектуры клиент-сервер
- •Формы метакомпьютера
- •Настольный суперкомпьютер.
- •2. Интеллектуальный инструментальный комплекс.
- •Сетевой суперкомпьютер.
- •Проблемы создания метакомпьютера
- •Сегодняшняя архитектура метакомпьютерной среды
- •Взаимосвязь метакомпьютинга с общими проблемами развития системного по
- •5. Модель клиент-сервер рс
- •5.1. Клиенты и серверы
- •5.2. Разделение приложений по уровням
- •5.3. Варианты архитектуры клиент-сервер
- •Symmetrix десять лет спустя
- •Матричная архитектура
- •Средства защиты данных
- •Ревизионизм и фон-неймановская архитектура
- •Однородные вычислительные среды
- •Однокристальный ассоциативный процессор сам2000
- •Модели нейронных сетей
- •Модели инс
- •Оптимизационные системы.
- •Неуправляемые системы распознавания образов.
- •Системы feed forward.
- •Элементы нейрологики с позиции аппаратной реализации
- •Реализация нейронных сетей
- •Программные нейрокомпьютеры
- •Программно-аппаратные нейрокомпьютеры
- •Практическое использование инс
Связное программное обеспечение для мультикомпьютеров
Связное программное обеспечение для мультикомпьютеров
Для программирования мультикомпьютера требуется специальное программное обеспечение (обычно это библиотеки), чтобы обеспечить связь между процессами и синхронизацию. В этом разделе мы расскажем о таком программном обеспечении.
Отметим, что большинство этих программных пакетов работают в системах МРР и COW.
В системах с передачей сообщений два и более процессов работают независимо друг от друга. Например, один из процессов может производить какие-либо данные, а другой или несколько других процессов могут потреблять их. Если у отправителя есть еще данные, нет никакой гарантии, что получатель (получатели) готов принять эти данные, поскольку каждый процесс запускает свою программу.
В большинстве систем с передачей сообщений имеется два примитива send и receive, но возможны и другие типы семантики. Ниже даны три основных варианта:
1. Синхронная передача сообщений.
2. Буферная передача сообщений.
3. Неблокируемая передача сообщений.
Синхронная передача сообщений. Если отправитель выполняет операцию send, а получатель еще не выполнил операцию receive, то отправитель блокируется до тех пор, пока получатель не выполнит операцию receive, а в это время сообщение копируется. Когда к отправителю возвращается управление, он уже знает, что сообщение было отправлено и получено. Этот метод имеет простую семантику и не требует буферизации. Но у него есть большой недостаток: отправитель блокируется до тех пор, пока получатель не примет и не подтвердит прием сообщения.
Буферная передача сообщений. Если сообщение отправляется до того, как получатель готов его принять, это сообщение временно сохраняется где-либо, например в почтовом ящике, и хранится там, пока получатель не возьмет его оттуда. При таком подходе отправитель может продолжать работу после операции send, даже если получатель в этот момент занят. Поскольку сообщение уже отправлено, отправитель может снова использовать буфер сообщений сразу же. Такая схема сокращает время ожидания. Вообще говоря, как только система отправила сообщение, отправитель может продолжать работу. Однако нет никаких гарантий, что сообщение было получено. Даже при надежной системе коммуникаций получатель мог сломаться еще до получения сообщения.
Неблокируемая передача сообщений. Отправитель может продолжать работу сразу после вызова. Библиотека только сообщает операционной системе, что она сделает вызов позднее, когда у нее будет время. В результате отправитель вообще не блокируется. Недостаток этого метода состоит в том, что когда отправитель продолжает работу после совершения операции send, он не может снова использовать буфер сообщений, так как есть вероятность, что сообщение еще не отправлено. Отправитель каким-то образом должен определять, когда он может снова использовать буфер. Например, можно опрашивать систему или совершать прерывание, когда буфер имеется в наличии. В обоих случаях программное обеспечение очень сложное.
В следующих двух разделах мы рассмотрим две популярные системы с передачей сообщений, которые применяются во многих мультикомпьютерах: PVM и MPI. Существуют и другие системы, но эти две наиболее распространенные.
PVM — виртуальная машина параллельного действия
PVM (Parallel Virtual Machine — виртуальная машина параллельного действия) —это система с передачей сообщений, изначально разработанная для машин COW с операционной системой UNIX [45, 142]. Позднее она стала применяться в других машинах, в том числе в системах МРР. Это самодостаточная система с управлением процессами и системой ввода-вывода.
PVM состоит из двух частей: библиотеки, вызываемой пользователем, и «сторожевого» процесса, который работает постоянно на каждой машине в мультикомпьютере.
Когда PVM начинает работу, она определяет, какие машины должны быть частью ее виртуального мультикомпьютера. Для этого она читает конфигурационный файл. «Сторожевой» процесс запускается на каждой из этих машин. Машины можно добавлять и убирать, вводя команды на консоли PVM.
Можно запустить n параллельных процессов с помощью команды
spawn –count n prog
Каждый процесс запустит prog. PVM решает, куда поместить процессы, но пользователь может сам подменять их с помощью аргументов команды spawn. Процессы могут запускаться из работающего процесса — для этого нужно вызвать процедуру Pum_spawn. Процессы могут быть организованы в группы, причем состав групп может меняться во время выполнения программы.
Взаимодействие в машине PVM осуществляется с помощью примитивов для передачи сообщений таким образом, чтобы взаимодействовать могли машины с разными системами счисления. Каждый процесс PVM в каждый момент времени имеет один активный пересылочный буфер и один активный приемный буфер.
Отправляя сообщение, процесс вызывает библиотечные процедуры, запаковывающие значения с самоописанием в активный пересылочный буфер, чтобы получатель мог узнать их и преобразовать в исходный формат.
Когда сообщение скомпоновано, отправитель вызывает библиотечную процедуру pvm_send, которая представляет собой блокирующий сигнал send. Получатель может поступить по-разному.
Во-первых, он может вызвать процедуру pvm_recv, которая блокирует получателя до тех пор, пока не придет подходящее сообщение. Когда вызов возвратится, сообщение будет в активном приемном буфере. Оно может быть распаковано и преобразовано в подходящий для данной машины формат с помощью набора распаковывающих процедур.
Во-вторых, получатель может вызвать процедуру pvm_trecv, которая блокирует получателя на определенный промежуток времени, и если подходящего сообщения за это время не пришло, он разблокируется. Процедура нужна для того, чтобы не заблокировать процесс навсегда.
Третий вариант — процедура pvm_nrecv, которая сразу же возвращает значение — это может быть либо сообщение, либо указание на отсутствие сообщений. Вызов можно повторять, чтобы опрашивать входящие сообщения.
Помимо всех этих примитивов PVM поддерживает широковещание (процедура pyw_6cos0 и мультивещание (процедура pvm_mcast).
Первая процедура отправляет сообщение всем процессам в группе, вторая посылает сообщение только некоторым процессам, входящим в определенный список.
Синхронизация между процессами осуществляется с помощью процедуры pvmJbarrier. Когда процесс вызывает эту процедуру, он блокируется до тех пор, пока определенное число других процессов не достигнет барьера и они не вызовут эту же процедуру. Существуют другие процедуры для управления главной вычислительной машиной, группами, буферами, для передачи сигналов, проверки состояния и т. д. PVM — это простой, легкий в применении пакет, имеющийся в наличии в большинстве компьютеров параллельного действия, что и объясняет его популярность.
МРI — интерфейс с передачей сообщений
Следующий пакет для программирования мультикомпьютеров — MPI (Message-Passing Interface — интерфейс с передачей сообщений). MPI гораздо сложнее, чем PVM. Он содержит намного больше библиотечных вызовов и намного больше параметров на каждый вызов. Первая версия MPI, которая сейчас называется MPI-1, была дополнена второй версией, MPI-2, в 1997 году. Ниже мы в двух словах расскажем о MPI-1, а затем посмотрим, что нового появилось в MPI-2.
MPI-1, в отличие от PVM, никак не связана с созданием процессов и управлением процессами. Создавать процессы должен сам пользователь с помощью локальных системных вызовов. После создания процессы организуются в группы, которые уже не изменяются. Именно с этими группами и работает MPI.
В основе MPI лежат 4 понятия: коммуникаторы, типы передаваемых данных, операции коммуникации и виртуальные топологии. Коммуникатор — это группа процессов плюс контекст. Контекст — это метка, которая идентифицирует что-либо (например, фазу выполнения). В процессе отправки и получения сообщений контекст может использоваться для того, чтобы несвязанные сообщения не мешали друг другу.
Сообщения могут быть разных типов: символьные, целочисленные (short, regular и long integers), с обычной и удвоенной точностью, с плавающей точкой и т. д. Можно образовать новые типы сообщений из уже существующих.
MPI поддерживает множество операций коммуникации. Ниже приведена операция, которая используется для отправки сообщений:
MPI_Send(buffer, count. data_type. destination, tag, communicator)
Этот вызов отправляет содержимое буфера (buffer) с элементами определенного типа (data_type) в пункт назначения. Count — это число элементов буфера. Поле tag помечает сообщение; получатель может сказать, что он будет приниматьсообщение только с данным тегом. Последнее поле показывает, к какой группе процессов относится целевой процесс (поле destination — это просто индекс списка процессов из определенной группы). Соответствующий вызов для получения сообщения таков:
MPI_Recv(&buffer, count, data_type, source, tag. communicator. Sstatus)
В нем сообщается, что получатель ищет сообщение определенного типа из определенного источника с определенным тегом.
MPI поддерживает 4 основных типа коммуникации. Первый тип синхронный. В нем отправитель не может начать передачу данных, пока получатель не вызовет процедуру MPI_Recv.
Второй тип — коммуникация с использованием буфера. Ограничение для первого типа здесь недействительно.
Третий тип стандартный. Он зависит от реализации и может быть либо синхронным, либо с буфером.
Четвертый тип сходен с первым. Здесь отправитель требует, чтобы получатель был доступен, но без проверки. Каждый из этих примитивов бывает двух видов: блокирующим и неблокирующим, что в сумме дает 8 примитивов. Получение может быть только в двух вариантах: блокирующим и неблокирующим.
MPI поддерживает коллективную коммуникацию — широковещание, распределение и сбор данных, обмен данными, агрегацию и барьер. При любых формах коллективной коммуникации все процессы в группе должны делать вызов, причем с совместимыми параметрами. Если этого сделать не удается, возникает ошибка. Например, процессы могут быть организованы в виде дерева, в котором значения передаются от листьев к корню, подчиняясь определенной обработке на каждом шаге (это может быть сложение значений или взятие максимума). Это типичная форма коллективной коммуникации.
Четвертое основное понятие в MPI — виртуальная топология, когда процессы могут быть организованы в дерево, кольцо, решетку, тор и т. д. Такая организация процессов обеспечивает способ наименования каналов связи и облегчает коммуникацию.
В MPI-2 были добавлены динамические процессы, доступ к удаленной памяти, неблокирующая коллективная коммуникация, расширяемая поддержка процессов ввода-вывода, обработка в режиме реального времени и многие другие особенности.
В научном сообществе идет война между лагерями MPI и PVM. Те, кто поддерживают PVM, утверждают, что эту систему проще изучать и легче использовать. Те, кто на стороне MPI, утверждают, что эта система выполняет больше функций и, кроме того, она стандартизована, что подтверждается официальным документом.