
- •1.1. Общая физиология нервной системы
- •1.1.1. Основные типы строения нервной системы
- •1.1.2. Мембранные потенциалы нервных элементов
- •1.1.3. Потенциалы и трансмембранные токи при возбуждении
- •1 М и толщиной 1 мкм выражается огромной цифрой - 10 Ом. Подобное сопротивление имел бы кабель длиной 10 км.
- •1.1.5. Межклеточные пространства в нервной системе
- •1.1.6. Аксонный транспорт
- •1.1.7. Физиология синапсов
- •1.1.8. Нервные сети и основные законы их функционирования
- •1.1.9. Рефлексы и рефлекторные дуги
- •1.1.10. Элементы эволюции нервной системы
- •1.2. Общая физиология мышц
- •1.2.1. Структура и иннервация поперечнополосатых мышц позвоночных животных
- •1.2.2. Механизм мышечного возбуждения
- •1.2.3. Передача сигнала с плазмалеммы на сократительный аппарат миофибрилл
- •1.2.4. Структура саркомера и механизм сокращения мышечного волокна
- •1.2.5. Механика мышцы
- •1.2.6. Энергетика мышцы
- •1.2.7. Особенности мышцы сердца позвоночных животных
- •1.2.8. Общая физиология гладких мышц позвоночных животных
- •1.2.9. Характеристика некоторых мышц беспозвоночных животных
- •1.2.10. Элементы эволюции мышц
- •1.2.11. Электрические органы рыб
- •1.2.12. Немышечные формы двигательной активности
- •1.3. Физиология секреторной клетки
- •1.3.1. Поступление предшественников секрета в клетку
- •1.3.2. Выведение веществ из клетки
- •2.1. Совершенствование регуляторных механизмов в процессе эволюции
- •2.2. Характеристика гуморальных механизмов регуляции
- •2.2.1. Основные особенности эволюции гормональных регуляторных механизмов
- •2.2.2. Регуляция функций эндокринной системы
- •2.2.3. Функциональное значение гормонов
- •2.2.4. Механизм действия гормонов
- •2.2.5. Классификация гормонов
- •2.3. Единство нервных и гуморальных механизмов регуляции
- •2.3.1. Саморегуляция функций организма
- •2.3.2. Обратная связь как один из ведущих механизмов в регуляции функций организма
- •2.3.3. Рефлекторный принцип регуляции функций
- •2.4. Общие черты компенсаторно-приспособительных реакций организма
- •3.1.2. Нервная система позвоночных животных
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо-гипофизарная система
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3) После исчезновения эти навыки самостоятельно не восстанавливаются.
- •3.14.2. Сон как форма приобретенного поведения
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17.2. Высшие интегративные системы мозга
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3) Описать структуру среды как закон связей между ее наиболее существенными переменными; 4) определить ведущее кинематическое звено для выполнения предстоящего двигательного акта.
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека-оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •4.1.2. Преобразование сигналов в рецепторах
- •4.1.3. Адаптация рецепторов
- •4.1.4. Сенсорные пути
- •4.1.5. Сенсорное кодирование
- •4.2. Соматическая сенсорная система
- •4.2.1. Соматическая сенсорная система беспозвоночных животных
- •4.2.2. Соматическая сенсорная система позвоночных животных
- •4.3. Скелетно-мышечная, или проприоцептивная, сенсорная система
- •4.3.1. Скелетно-мышечная сенсорная система беспозвоночных животных
- •4.3.2. Скелетно-мышечная сенсорная система позвоночных животных
- •4.4. Сенсорная система боковой линии
- •4.4.2. Электрорецепторы
- •4.4.3. Восходящие пути
- •4.5. Гравитационная сенсорная система
- •4.5.1. Гравитационная сенсорная система беспозвоночных животных
- •4.5.2. Гравитационная сенсорная система позвоночных животных
- •4.6. Слуховая сенсорная система
- •4.6.1. Физические характеристики звуковых сигналов
- •4.6.2. Слуховая сенсорная система беспозвоночных животных
- •4.6.3. Слуховая сенсорная система позвоночных животных
- •4.6.4. Эхолокация
- •4.7. Хеморецепторные сенсорные системы
- •4.7.1. Хеморецепторные сенсорные системы беспозвоночных животных
- •4.7.2. Хеморецепторные сенсорные системы позвоночных животных
- •4.8. Зрительная сенсорная система
- •4.8.1. Организация фоторецепторов
- •4.8.2. Механизмы фоторецепции
- •4.8.3. Зрительная сенсорная система беспозвоночных животных
- •4.8.4. Зрительная сенсорная система позвоночных животных
- •5.1. Дуга автономного рефлекса
- •5.1.1. Подразделение автономной нервной системы
- •5.1.2. Анатомические структуры
- •5.1.4. Различия в конструкции автономной и соматической нервной системы
- •5.1.5. Чувствительное звено дуги автономного рефлекса
- •5.1.6. Ассоциативное (вставочное) звено
- •5.1.7. Эфферентное звено
- •5.2. Синаптическая передача
- •5.2.1. Ацетилхолин
- •5.2.2. Норадреналин и адреналин
- •5.2.3. Трансдукторы
- •5.2.4. Серотонин
- •5.2.5. Аденозинтрифосфат (атф)
- •5.2.6. Вероятные кандидаты в медиаторы
- •5.2.7. Активные факторы
- •5.3.2. Аксон-рефлекс
- •5.3.3. Висцеросоматический рефлекс
- •5.3.4. Висцеросенсорный рефлекс
- •5.4. Влияние автономной нервной системы на деятельность эффекторных органов
- •5.4.1. Адаптационно-трофическая функция симпатической нервной системы
- •5.4.2. Роль парасимпатической нервной системы в регуляции висцеральных функций
- •5.4.3. Участие метасимпатической нервной системы в регуляции висцеральных функций
- •5.4.4. Тоническая активность
- •5.5.2. Стволовые центры
- •5.5.3. Гипоталамические центры
- •5.5.4. Лимбическая система
- •5.5.5. Мозжечок
- •5.5.6. Ретикулярная формация
- •5.5.7. Кора больших полушарий
- •6.1. Значение и место эндокринной регуляции в общей системе интеграционных механизмов
- •6.1.1. Методы изучения функций желез внутренней секреции
- •6.1.2. Понятие о нейросекреции
- •6.2.1. Гипоталамо-нейрогипофизарная система
- •6.2.2. Гипоталамо-аденогипофизарная система
- •6.2.3. Гипофиз
- •6.2.4. Шишковидное тело
- •6.3.2. Надпочечник и его гормоны
- •6.3.3. Гонады и половые гормоны
- •6.4.2. Гормональная регуляция водно-солевого гомеостаза
- •6.5. Поджелудочная железа и ее гормоны
- •6.6. Гормоны пищеварительного тракта
- •6.7. Гормоны сердечно-сосудистой системы
- •6.7.1. Гормоны сердца
- •6.7.2. Гормоны эндотелия
- •6.8. Гормоны плазмы и клеток крови
- •6.9. Гормонопоэз и основные механизмы трансдукции гормонального сигнала
- •6.10. Рецепторы гормонов
- •7.1. Эволюция внутренней среды организма
- •7.2. Основные механизмы поддержания постоянства внутренней среды организма. Понятие о гомеостазе
- •7.3. Понятие о системе крови
- •7.3.1. Основные функции крови
- •7.3.2. Объем и состав крови
- •7.3.3. Физико-химические свойства крови
- •7.4. Плазма крови
- •5 Г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.
- •7.5. Форменные элементы крови
- •7.5.1. Эритроциты
- •7.5.2. Пигменты крови
- •7.5.3.Скорость оседания эритроцитов (соэ)
- •7.5.4. Лейкоциты
- •7.5.5. Тромбоциты
- •7.6. Гемостаз (остановка кровотечения)
- •7.6.1. Свертывание крови
- •7.6.3. Противосвертывающие механизмы
- •7.7. Группы крови
- •7.7.2. Резус-фактор
- •7.8. Кроветворение и его регуляция
- •7.8.1. Эритропоэз
- •7.8.2. Лейкопоэз. Тромбоцитопоэз
- •7.9. Лимфа
- •8.1. Компоненты иммунной системы
- •8. 2. Механизмы неспецифического (врожденного) иммунитета
- •8.2.1. Фагоцитоз
- •8.2.2. Внеклеточное уничтожение (цитотоксичность)
- •8.2.3. Разрушение чужеродных клеток с помощью гуморальных механизмов
- •8.2.4. Роль острой воспалительной реакции в механизмах неспецифической резистентности организма
- •8.3. Механизмы специфического приобретенного иммунитета
- •8.3.1. Характеристика клеток, участвующих в реакциях специфического иммунитета
- •8.3.2. Иммуноглобулины, структура и роль в реализации специфического иммунного ответа
- •8.4.2. Участие цитокинов в регуляции иммунных реакций
- •8.4.4. Регуляторные иммунонейроэндокринные сети
- •9.2. Функции сердца
- •9.2.1. Общие принципы строения
- •9.2.2. Свойства сердечной мышцы
- •9.2.3. Механическая работа сердца
- •9.2.4. Тоны сердца
- •9.2.5. Основные показатели деятельности сердца
- •9.4. Регуляция работы сердца
- •9.4.1. Внутриклеточная регуляция
- •9.4.2. Межклеточная регуляция
- •9.4.3. Внутрисердечная нервная регуляция
- •9.4.4. Экстракардиальная нервная регуляция
- •9.4.5. Гуморальная регуляция
- •9.4.6. Тонус сердечных нервов
- •9.4.7. Гипоталамическая регуляция
- •9.4.8. Корковая регуляция
- •9.4.9. Рефлекторная регуляция
- •9.4.10. Эндокринная функция сердца
- •9.5. Сосудистая система
- •9.5.1. Эволюция сосудистой системы
- •9.5.2. Функциональные типы сосудов.
- •9.5.3. Основные законы гемодинамики
- •9.5.4. Давление в артериальном русле
- •9.5.5. Артериальный пульс
- •9.5.6. Капиллярный кровоток
- •9.5.7. Кровообращение в венах
- •9.6. Регуляция кровообращения
- •9.6.1. Местные механизмы регуляции кровообращения
- •9.6.2. Нейрогуморальная регуляция системного кровообращения
- •9.7. Кровяное депо
- •9.8.2. Мозговое кровообращение
- •9.8.3. Легочное кровообращение
- •9.8.4. Кровообращение в печени
- •9.8.5. Почечное кровообращение
- •9.8.6. Кровообращение в селезенке
- •9.9. Кровообращение плода
- •9.10.3. Состав, свойства, количество лимфы
- •9.10.4. Лимфообразование
- •9.10.5. Лимфоотток
- •10.1. Эволюция типов дыхания
- •10.1.1. Дыхание беспозвоночных животных
- •10.1.2. Дыхание позвоночных животных
- •10.2. Дыхательный акт и вентиляция легких
- •10.2.1. Дыхательные мышцы
- •10.2.2. Дыхательный акт
- •10.2.3. Вентиляция легких и внутрилегочный объем газов
- •10.2.4. Соотношение вентиляции и перфузии легких
- •10.2.5. Паттерны дыхания
- •10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер
- •10.3.2. Транспорт кислорода кровью
- •10.3.3. Транспорт углекислого газа кровью
- •10.3.4. Транспорт кислорода и углекислого газа в тканях
- •10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания
- •10.4.3. Механорецепторы дыхательной системы
- •10.4.4. Роль надмостовых структур
- •10.5.2. Влияние уровня бодрствования
- •10.5.3. Эмоциональные и стрессорные факторы
- •10.5.4. Мышечная деятельность
- •11.1. Источники энергии и пути ее превращения в организме
- •11.1.1. Единицы измерения энергии
- •11.1.3.Методы исследования обмена энергии
- •11.1.4. Основной обмен
- •11.1.5. Обмен в покое и при мышечной работе
- •11.1.7. Запасы энергии
- •11.2. Питание
- •11.2.1. Потребность в пище и рациональное питание
- •11.2.2. Потребность в воде
- •11.2.3. Потребность в минеральных веществах
- •11.2.4. Потребность в углеводах
- •11.2.5. Потребность в липидах
- •11.2.6. Потребность в белках
- •11.2.7. Потребность в витаминах
- •11.2.8. Потребность в пищевых волокнах
- •11.3. Терморегуляция
- •11.3.1. Пойкилотермия и гомойотермия
- •11.3.2. Температура тела
- •11.3.3. Терморецепция, субъективные температурные ощущения и дискомфорт
- •11.3.4. Центральные (мозговые) механизмы терморегуляции
- •11.3.5. Теплопродукция
- •11.3.6. Теплоотдача
- •11.3.9. Тепловая и холодовая адаптация
- •11.3.10. Сезонная спячка
- •11.3.11. Онтогенез терморегуляции
- •11.3.12. Лихорадка
- •12.1.2. Регуляторная часть пищеварительной системы
- •12.1.3. Интеграция нейромедиаторных и гормональных факторов в пищеварительной cистеме
- •12.1.4. Типы пищеварения
- •12.2. Секреторная функция
- •12.2.1. Слюнные железы
- •12.2.2. Железы желудка
- •12.2.3. Поджелудочная железа
- •12.2.4. Желчеотделение и желчевыделение
- •12.2.5. Секреция кишечных желез
- •12.3. Переваривание пищевых веществ
- •12.4. Мембранное пищеварение и всасывание
- •12.4.2. Всасывание
- •12.5. Моторная функция
- •12.5.1. Сопряжение возбуждения с сокращением в гладкомышечных клетках
- •12.5.2. Регуляция сократительной активности гладких мышц желудочно-кишечного тракта
- •12.5.3. Моторная функция различных отделов желудочно-кишечного тракта
- •12.5.4. Периодическая моторная деятельность желудочно-кишечного тракта
- •12.6.2. Насыщение
- •13.1. Водные фазы
- •13.2. Эволюция осморегуляции
- •13.3. Выделительные органы беспозвоночных животных различных типов
- •13.4. Почка позвоночных животных
- •13.5. Структура и функции почки млекопитающих
- •13.6.2. Клубочковая фильтрация
- •13.6.3. Реабсорбция в канальцах
- •13.6.5. Синтез веществ в почке
- •13.6.6. Осмотическое разведение и концентрирование мочи
- •13.6.7. Роль почек в осморегуляции и волюморегуляции
- •13.6.8. Механизм участия почек в регуляции кислотно-основного равновесия
- •13.6.9. Экскреторная функция почки
- •13.7. Нервная регуляция деятельности почки
- •13.8. Инкреторная функция почки
- •13.9. Метаболическая функция почки
- •13.10. Выделение мочи
- •14.2. Мужские половые органы
- •14.4. Половое созревание
- •14.5. Половое влечение
- •14.6. Половой акт
- •14.7. Половая жизнь
- •1) Парасимпатические из крестцового отдела (рефлекторные и психогенные влияния); 2) симпатические из пояснично-грудного отдела (психогенные влияния)
- •14.8.2. Половые рефлексы у женщин
- •14.9. Половой цикл
- •14.10. Оплодотворение
- •14.11. Беременность
- •14.11.1. Плацента
- •14.11.2. Плод
- •14.11.3. Состояние организма матери при беременности
- •14.11.4. Многоплодная беременность
- •14.11.5. Латентная стадия беременности
- •14.11.6. Беременность у животных
- •14.12. Роды
- •14.13.2. Физиология органов размножения самок
- •14.13.3. Инкубация
- •14.14. Лактация
- •15.2. Проявления старения
- •15.3. Профилактика старения
1.1.9. Рефлексы и рефлекторные дуги
Рефлексом принято называть "машинообразный" ответ организма на какое-либо воздействие, который реализуется в форме последовательного возбуждения цепочки элементов, составляющих так называемую рефлекторную дугу. В рефлекторной дуге различают рецептор (сенсор), афферентный путь, центральное звено, эфферентный путь, эффектор (рабочий орган).
Пример рефлекса - отдергивание конечности при нанесении болевого раздражения. Такой ответ можно наблюдать в неосложненной форме у спинальной (декапитированной) лягушки. Рефлекторная дуга этого рефлекса включает рецепторы кожи, чувствительные нейроны (с телами, лежащими в спинальных ганглиях), вставочные нейроны, мотонейроны спинного мозга и иннервируемые ими мышцы-сгибатели (эффекторы).
Рефлекторную дугу для простоты изображают в виде цепочки одиночных элементов или ряда таких параллельных цепочек (рис. 1.46). Памятуя о наличии дивергенции и конвергенции в нервной системе, необходимо заметить, что такая рефлекторная дуга является искусственной, условно выделенной частью нервной системы (нервной сети). Однако это "выделение" целесообразно, так как оно помогает сосредоточить внимание на важнейших компонентах нервного механизма, реализующего данный ответ на внешнее воздействие.
Описано и изучено множество рефлексов у различных животных и человека. Все эти рефлексы по ряду моментов могут быть разделены на группы.
Рис. 1.46 Рефлекторные дуги кожного (А) и мышечного (коленного) (Б) рефлексов млекопитающих
А - трехнейронная, дисинаптическая дуга кожного рефлекса; Б - двухнейронная, моносинаптическая дуга коленного рефлекса: 1 - кожные рецепторы, 2 - мышечные веретена (рецепторы растяжения мышцы, реагирующие на удар по подколенному сухожилию).
Классификация рефлексов. Возможно разделение рефлексов по рецепторам. Различают рефлексы с рецепторов кожи - кожные, сетчатки глаз - зрительные, с рецепторов улитки - слуховые, с обонятельных рецепторов - обонятельные. Всю эту группу называют экстероцептивными рефлексами; рефлексы с рецепторов внутренних органов называют интероцептивными; рефлексы с рецепторов мышц, сухожилий и суставов - проприоцептивными.
Возможно разделение рефлексов по эффекторам. Различают рефлексы двигательные (реализуемые мышцами скелета), сердечные (проявляющиеся в изменениях работы мышцы сердца), сосудистые (проявляющиеся в изменении тонуса гладких мышц кровеносных сосудов), секреторные (реализуемые в развитии или изменении секреции желез) и т. п.
Возможно разделение рефлексов по локализации и характеру их центрального звена. Центральное звено - это та часть ЦНС, которая необходима и достаточна для данного рефлекса.
Приведенный выше пример рефлекса с кожи на мышцы сгибателя лапки лягушки реализуется спинным мозгом и называется спинномозговым (спинальным). Он имеет трехнейронную и, соответственно, дисинаптическую рефлекторную дугу (здесь считают только центральные синапсы). У некоторых рефлексов ствола головного мозга в дуге может быть четыре-пять нейронов (три и четыре центральных синапса соответственно). Все рефлексы, у которых число синапсов в ЦНС больше единицы, называют полисинаптическими.
Однако существуют и моносинаптические рефлексы, реализуемые двухнейронной рефлекторной дугой. Пример такого рефлекса - спинномозговой коленный рефлекс млекопитающих животных и человека. Этот рефлекс возникает при сильном ударе по сухожилию четырехглавой мышцы бедра под коленом. При этом прогибающееся сухожилие производит рывок (растяжение) мышцы, на что мышца отвечает кратким сокращением (быстрое и краткое разгибание в коленном суставе). Рефлекторная дуга этого рефлекса представлена рецепторами растяжения четырехглавой мышцы (чувствительные нервные окончания мышечных веретен), чувствительным путем - отростками клеток спинального ганглия, крупными мотонейронами спинного мозга с их аксонами и четырехглавой мышцей (см. рис. 1.46).
Надо отметить, что рецепторы растяжения, дающие начало этому рефлексу, расположены на так называемых внутриверетенных (интрафузальных) мышечных волокнах, причем на их средних, лишенных сократимости, но легко растяжимых частях, содержащих ядра (ядерных сумках). Вместе с тем эти же интрафузальные мышечные волокна на своих концах имеют моторную иннервацию из малых ?-мотонейронов. Импульсы ?-мотонейронов могут возбуждать и таким образом приводить в сокращенное состояние полярные зоны интрафузальных мышечных волокон, т. е. напрягать ядерную сумку и делать более чувствительными ее рецепторы. Таким образом, порог возникновения коленного рефлекса и его сила могут регулироваться влияниями из ЦНС через ?-мотонейроны.
При постоянном растяжении мышцы-разгибателя колена, например, под тяжестью тела, стремящейся согнуть колено, описанный рефлекс имеет тонический (т. е. постоянный) характер. При этом сокращение мышцы как бы разгружает рецептор растяжения, "включенный" параллельно, что снижает рефлекс. Но даже небольшое ослабление мышцы сразу же усиливает нагрузку на рецептор и возвращает необходимую силу рефлекса. Таким образом, в этом случае работает рефлекторное кольцо: рецептор > ЦНС > эффектор > рецептор > ... Подобные отношения в естественных условиях довольно часты.
"Укороченным" вариантом коленного рефлекса (и других рефлексов растяжения) является так называемый Н-рефлекс мышцы (аш-рефлекс), возникающий при пороговом одиночном электрическом раздражении ее проприоцептивных афферентных волокон (группа Ia). Так как эти волокна имеют более низкий порог раздражения, чем моторные (?), то реакция мышцы в этом случае определяется только моносинаптическим рефлексом, в рефлекторной дуге которого "обойдено" собственно рецепторное звено. Но если сила раздражения увеличивается и раздражение становится эффективным для ?-моторных волокон, то к Н-рефлексу примешивается более быстрый ответ мышцы на раздражение ее моторных нервных волокон. Так как рефлекторная дуга коленного рефлекса начинается и заканчивается в одной и той же мышце, этот рефлекс называют собственным рефлексом мышцы (миостатическим рефлексом). Все рефлексы, кроме того, разделяются по их биологической значимости: на оборонительные, или защитные (пример - отдергивание конечности при болевом раздражении); пищедобывательные и пищеварительные; сексуальные; родительские и исследовательские. Простейший пример исследовательского (ориентировочного) рефлекса - поворот головы и ушей животного к источнику нового звука.
Наконец, рефлексы разделяются на врожденные (безусловные) и приобретенные (условные). Последние возникают в процессе обучения в результате формирования новых рефлекторных дуг на основе временных связей между нервными клетками (см. гл. 3).
Общие свойства рефлексов. Проведение сигнала по классической рефлекторной дуге, например, защитного кожного или собственного рефлекса мышцы осуществляется в одну сторону (от рецептора к центру, а от центра к эффектору), что задается свойствами химических синапсов, хотя и не исключены противоположно направленные сигналы по возвратным коллатералям, а также управляющие импульсы из ЦНС к рецепторам.
На развитие рефлекса затрачивается некоторое время, называемое латентным периодом рефлекса, или временем рефлекса. Время рефлекса (tреф) складывается из ряда моментов: из латентного периода возбуждения рецептора (tрец), времени проведения ПД по афферентному пути (tаф)" центрального времени (tц), времени проведения ПД по эфферентному пути (tэф) и латентного периода ответа эффектора, например мышцы (tм):
tреф = tрец + tаф + tэф + tц + tм
В моносинаптических рефлексах типа коленного у человека tpеф измеряется долями секунды, большую часть tреф здесь составляют tаф , tэф и tм. В этих рефлексах tц не превышает 1,2 мс и в основном определяется синаптической задержкой (0,7 мс), так как при одновременной активации массы рецепторов и затем афферентов ВПСП в мотонейронах имеют сверхпороговую величину.
В полисинаптических рефлексах типа защитных при раздражении кожи время рефлекса больше. При умеренных раздражениях оно может измеряться секундами. Однако это замедление ответа определяется не столько числом синапсов в рефлекторной дуге, сколько тем, что при умеренных раздражениях кожи активируется небольшое число рецепторов, и их импульсы поначалу вызывают лишь пороговые ВПСП в соответствующих вставочных нейронах спинного мозга. При этом требуется некоторое время на то, чтобы в результате суммации последовательных ВПСП здесь был достигнут порог генерации ПД.
Рис. 1.47 Последействие спинномозгового рефлекса и один из механизмов этого феномена
а - стимул, например, электрический удар по рецепторам кожи (указан стрелкой), б - синхронный одиночный залп афферентных импульсов, в - типичный ответ интернейронов (длительный ВПСП, серия ПД), порождающий соответствующую реакцию мотонейронов, г - механический ответ мышцы с последействием.
Следует иметь в виду, что при одиночном раздражении одного рецептора кожи или мышцы и, соответственно, одного афферентного нейрона спинномозговой рефлекс, как правило, отсутствует. Известно, что синапс от одного афферентного волокна Iа (унитарный афферентный вход) на спинномозговом мотонейроне у позвоночных имеет низкий квантовый состав и, значит, ВПСП при этом является подпороговым.
Таким образом, для реализации спинномозгового рефлекса необходимы либо одновременное раздражение многих рецепторов, обеспечивающее пространственную суммацию ВПСП от конвергирующих входов (как при коленном рефлексе), либо, если раздражаемая группа рецепторов мала, длительное раздражение, обеспечивающее суммацию последовательных ВПСП (как в случае рефлекса с рецептора кожи).
При этом важно следующее правило: при равных афферентных входах (потоках возбуждающих сенсорных сигналов) возбудимость у мелких мотонейронов выше, чем у крупных. Это объясняется тем, что чем мельче мотонейрон, тем выше его входное сопротивление электрическому току и тем больше амплитуда ВПСП, порождаемого током активируемых постсинаптических рецепторов. По той же причине при постепенном усилении афферентного потока активизируются сначала мелкие, а затем крупные мотонейроны. Тормозные входы, наоборот, более эффективны в крупных мотонейронах, так как относительно слабые ВПСП легче шунтируются активным тормозным входом.
В высших отделах мозга, связанных с формированием ощущения, даже единичные активации одиночных кожных рецепторов, не вызывающие спинальных рефлексов, могут быть восприняты. Это объясняется, видимо, тем, что у восходящих коллатералей сенсорных нейронов терминали имеют более высокий квантовый состав передачи, а вставочные нейроны восходящих путей мелки, обнаруживают большой и длительный ВПСП, который порождает не одиночный ПД, а целую серию ПД, направляемых в высшие инстанции.
При усилении раздражения рецепторов кожи время защитного сгибательного рефлекса укорачивается. Это происходит из-за роста частоты сигналов (последовательной суммации) и увеличения числа активных рецепторов (пространственной суммации в центрах).
В случае условных рефлексов, реализуемых с участием высших центров, их время может быть удлинено (и сильно!) за счет срабатывания специального тормозного механизма в центрах (см. разд. 3.14.4).
В центральной части рефлекторной дуги ритм входных (афферентных) сигналов, как правило, трансформируется в иной ритм выходных сигналов. Это связано и с феноменами последовательной суммации ПСП, и с другими причинами, например с явлениями возвратного торможения мотонейронов через клетки Реншоу у позвоночных.
Рис. 1.48 Постактивационная (посттетаническая) потенциация в моносинаптической дуге спинного мозга позвоночного
А - схема опыта, Б - рефлекторные синхронные разряды мотонейронов (составные ПД вентрального корешка) в ответ на редкие раздражения дорсального корешка. Амплитуда этого ПД пропорциональна числу активируемых мотонейронов. После частого раздражения - тетанизации (начало и конец обозначены стрелками) - амплитуда ответов на продолжающиеся редкие раздражения значительное время резко повышена.
Сила рефлекторного ответа в конечном счете определяется числом активированных эффекторных нейронов (например, мотонейронов) и частотой их сигналов.
Сила рефлекса, как правило, растет с усилением раздражения рецепторов. Пределом этого роста является вовлечение в ответ мотонейронов в максимальном ритме, хотя предел обычно не достигается в связи с подключением других рецепторов (болевых) и возникновением тормозных влияний.
Полисинаптическим рефлексам свойственно последействие (рис. 1.47), т. е. продолжение ответа некоторое время после того, как внешнее раздражение прекращено. Последействие не связано с продолжающейся импульсацией рецепторов, так как оно возникает и при кратком электрическом раздражении центральных концов перерезанных афферентных волокон.
В основе последействия полисинаптического рефлекса лежат следующие причины: большая длительность ВПСП вставочных нейронов, порождающих не одиночный ПД, а их серию, которая растягивается на десятки и сотни миллисекунд, и дисперсия во времени сигналов, проходящих по параллельным цепочкам нейронов разной сложности и с разными скоростями срабатывания.
В случае очень длительных последействий у рефлексов высшего порядка, например у ориентировочных рефлексов на звуки с задержкой животного в позе прислушивания на секунды и минуты, можно в качестве причины такого последействия предполагать и циркуляцию импульсов в замкнутых нейронных цепях. У моносинаптических рефлексов последействия, как правило, нет. Это определяется и свойствами мотонейронов, и наличием их возвратного торможения.
Многие рефлекторные центры обладают свойством постактивационной потенциации, т. е. усиления ответов на одиночные тестирующие сенсорные сигналы в течение некоторого времени после окончания ритмической активности.
Этот феномен выявляется и в моносинаптической дуге коленного рефлекса у млекопитающих, особенно после длительного "отдыха" системы (рис. 1.48). Причина этой постактивационной (или, что то же, посттетанической) потенциации, длящейся несколько минут, лежит в синаптическом облегчении, видимо, отражающем накопление остаточного Са2+ в пресинаптических терминалях при ритмической активности. Гораздо более длительная постактивационная потенциация наблюдается в синапсах гиппокампа, где она, видимо, имеет более сложный механизм (см. разд. 3.8.1).
В центрах рефлексов может наблюдаться феномен габитуации - ослабления реакции, "привыкания" к раздражителю. Это может быть связано с уже рассмотренной выше синаптической депрессией.
В заключение необходимо указать, что центральным звеньям рефлекторных дуг, как правило, свойственна меньшая надежность функции, чем нервным проводникам. Рефлекторные центры более, нежели проводники, страдают от действия различных неблагоприятных факторов, в частности гипоксии и многих фармакологических агентов, например наркотиков. Особенно ранимы в этом отношении центры полисинаптических рефлексов. Это определяется свойствами синаптических аппаратов вставочных нейронов.
У высших млекопитающих (в том числе человека) ЦНС использует около 2% всего потребляемого организмом О2. Прекращение подачи О2 в мозг (при остановке кровотока и других расстройствах) на 10 с приводит у человека к потере сознания, а 4-6-минутная глубокая гипоксия (нехватка O2) вызывает гибель многих нейронов мозга.
Особая химическая "ранимость" клеток мозга объясняет существование специального защитного барьера между кровью и межклеточной жидкостью мозга - гематоэнцефалического барьера.
Этот барьер, сформированный главным образом относительно проницаемой стенкой мозговых капилляров, пропускает воду, ионы, глюкозу и аминокислоты, задерживая многие физиологически активные вещества (см. разд. 3.27). Однако в нем существуют особые участки, где хеморецепторы мозга получают прямую информацию о наличии в крови гормонов и других не проникающих через барьер веществ.
У беспозвоночных нервные ганглии также снабжены оболочками, выполняющими барьерные функции.