
- •1.1. Общая физиология нервной системы
- •1.1.1. Основные типы строения нервной системы
- •1.1.2. Мембранные потенциалы нервных элементов
- •1.1.3. Потенциалы и трансмембранные токи при возбуждении
- •1 М и толщиной 1 мкм выражается огромной цифрой - 10 Ом. Подобное сопротивление имел бы кабель длиной 10 км.
- •1.1.5. Межклеточные пространства в нервной системе
- •1.1.6. Аксонный транспорт
- •1.1.7. Физиология синапсов
- •1.1.8. Нервные сети и основные законы их функционирования
- •1.1.9. Рефлексы и рефлекторные дуги
- •1.1.10. Элементы эволюции нервной системы
- •1.2. Общая физиология мышц
- •1.2.1. Структура и иннервация поперечнополосатых мышц позвоночных животных
- •1.2.2. Механизм мышечного возбуждения
- •1.2.3. Передача сигнала с плазмалеммы на сократительный аппарат миофибрилл
- •1.2.4. Структура саркомера и механизм сокращения мышечного волокна
- •1.2.5. Механика мышцы
- •1.2.6. Энергетика мышцы
- •1.2.7. Особенности мышцы сердца позвоночных животных
- •1.2.8. Общая физиология гладких мышц позвоночных животных
- •1.2.9. Характеристика некоторых мышц беспозвоночных животных
- •1.2.10. Элементы эволюции мышц
- •1.2.11. Электрические органы рыб
- •1.2.12. Немышечные формы двигательной активности
- •1.3. Физиология секреторной клетки
- •1.3.1. Поступление предшественников секрета в клетку
- •1.3.2. Выведение веществ из клетки
- •2.1. Совершенствование регуляторных механизмов в процессе эволюции
- •2.2. Характеристика гуморальных механизмов регуляции
- •2.2.1. Основные особенности эволюции гормональных регуляторных механизмов
- •2.2.2. Регуляция функций эндокринной системы
- •2.2.3. Функциональное значение гормонов
- •2.2.4. Механизм действия гормонов
- •2.2.5. Классификация гормонов
- •2.3. Единство нервных и гуморальных механизмов регуляции
- •2.3.1. Саморегуляция функций организма
- •2.3.2. Обратная связь как один из ведущих механизмов в регуляции функций организма
- •2.3.3. Рефлекторный принцип регуляции функций
- •2.4. Общие черты компенсаторно-приспособительных реакций организма
- •3.1.2. Нервная система позвоночных животных
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо-гипофизарная система
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3) После исчезновения эти навыки самостоятельно не восстанавливаются.
- •3.14.2. Сон как форма приобретенного поведения
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17.2. Высшие интегративные системы мозга
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3) Описать структуру среды как закон связей между ее наиболее существенными переменными; 4) определить ведущее кинематическое звено для выполнения предстоящего двигательного акта.
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека-оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •4.1.2. Преобразование сигналов в рецепторах
- •4.1.3. Адаптация рецепторов
- •4.1.4. Сенсорные пути
- •4.1.5. Сенсорное кодирование
- •4.2. Соматическая сенсорная система
- •4.2.1. Соматическая сенсорная система беспозвоночных животных
- •4.2.2. Соматическая сенсорная система позвоночных животных
- •4.3. Скелетно-мышечная, или проприоцептивная, сенсорная система
- •4.3.1. Скелетно-мышечная сенсорная система беспозвоночных животных
- •4.3.2. Скелетно-мышечная сенсорная система позвоночных животных
- •4.4. Сенсорная система боковой линии
- •4.4.2. Электрорецепторы
- •4.4.3. Восходящие пути
- •4.5. Гравитационная сенсорная система
- •4.5.1. Гравитационная сенсорная система беспозвоночных животных
- •4.5.2. Гравитационная сенсорная система позвоночных животных
- •4.6. Слуховая сенсорная система
- •4.6.1. Физические характеристики звуковых сигналов
- •4.6.2. Слуховая сенсорная система беспозвоночных животных
- •4.6.3. Слуховая сенсорная система позвоночных животных
- •4.6.4. Эхолокация
- •4.7. Хеморецепторные сенсорные системы
- •4.7.1. Хеморецепторные сенсорные системы беспозвоночных животных
- •4.7.2. Хеморецепторные сенсорные системы позвоночных животных
- •4.8. Зрительная сенсорная система
- •4.8.1. Организация фоторецепторов
- •4.8.2. Механизмы фоторецепции
- •4.8.3. Зрительная сенсорная система беспозвоночных животных
- •4.8.4. Зрительная сенсорная система позвоночных животных
- •5.1. Дуга автономного рефлекса
- •5.1.1. Подразделение автономной нервной системы
- •5.1.2. Анатомические структуры
- •5.1.4. Различия в конструкции автономной и соматической нервной системы
- •5.1.5. Чувствительное звено дуги автономного рефлекса
- •5.1.6. Ассоциативное (вставочное) звено
- •5.1.7. Эфферентное звено
- •5.2. Синаптическая передача
- •5.2.1. Ацетилхолин
- •5.2.2. Норадреналин и адреналин
- •5.2.3. Трансдукторы
- •5.2.4. Серотонин
- •5.2.5. Аденозинтрифосфат (атф)
- •5.2.6. Вероятные кандидаты в медиаторы
- •5.2.7. Активные факторы
- •5.3.2. Аксон-рефлекс
- •5.3.3. Висцеросоматический рефлекс
- •5.3.4. Висцеросенсорный рефлекс
- •5.4. Влияние автономной нервной системы на деятельность эффекторных органов
- •5.4.1. Адаптационно-трофическая функция симпатической нервной системы
- •5.4.2. Роль парасимпатической нервной системы в регуляции висцеральных функций
- •5.4.3. Участие метасимпатической нервной системы в регуляции висцеральных функций
- •5.4.4. Тоническая активность
- •5.5.2. Стволовые центры
- •5.5.3. Гипоталамические центры
- •5.5.4. Лимбическая система
- •5.5.5. Мозжечок
- •5.5.6. Ретикулярная формация
- •5.5.7. Кора больших полушарий
- •6.1. Значение и место эндокринной регуляции в общей системе интеграционных механизмов
- •6.1.1. Методы изучения функций желез внутренней секреции
- •6.1.2. Понятие о нейросекреции
- •6.2.1. Гипоталамо-нейрогипофизарная система
- •6.2.2. Гипоталамо-аденогипофизарная система
- •6.2.3. Гипофиз
- •6.2.4. Шишковидное тело
- •6.3.2. Надпочечник и его гормоны
- •6.3.3. Гонады и половые гормоны
- •6.4.2. Гормональная регуляция водно-солевого гомеостаза
- •6.5. Поджелудочная железа и ее гормоны
- •6.6. Гормоны пищеварительного тракта
- •6.7. Гормоны сердечно-сосудистой системы
- •6.7.1. Гормоны сердца
- •6.7.2. Гормоны эндотелия
- •6.8. Гормоны плазмы и клеток крови
- •6.9. Гормонопоэз и основные механизмы трансдукции гормонального сигнала
- •6.10. Рецепторы гормонов
- •7.1. Эволюция внутренней среды организма
- •7.2. Основные механизмы поддержания постоянства внутренней среды организма. Понятие о гомеостазе
- •7.3. Понятие о системе крови
- •7.3.1. Основные функции крови
- •7.3.2. Объем и состав крови
- •7.3.3. Физико-химические свойства крови
- •7.4. Плазма крови
- •5 Г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.
- •7.5. Форменные элементы крови
- •7.5.1. Эритроциты
- •7.5.2. Пигменты крови
- •7.5.3.Скорость оседания эритроцитов (соэ)
- •7.5.4. Лейкоциты
- •7.5.5. Тромбоциты
- •7.6. Гемостаз (остановка кровотечения)
- •7.6.1. Свертывание крови
- •7.6.3. Противосвертывающие механизмы
- •7.7. Группы крови
- •7.7.2. Резус-фактор
- •7.8. Кроветворение и его регуляция
- •7.8.1. Эритропоэз
- •7.8.2. Лейкопоэз. Тромбоцитопоэз
- •7.9. Лимфа
- •8.1. Компоненты иммунной системы
- •8. 2. Механизмы неспецифического (врожденного) иммунитета
- •8.2.1. Фагоцитоз
- •8.2.2. Внеклеточное уничтожение (цитотоксичность)
- •8.2.3. Разрушение чужеродных клеток с помощью гуморальных механизмов
- •8.2.4. Роль острой воспалительной реакции в механизмах неспецифической резистентности организма
- •8.3. Механизмы специфического приобретенного иммунитета
- •8.3.1. Характеристика клеток, участвующих в реакциях специфического иммунитета
- •8.3.2. Иммуноглобулины, структура и роль в реализации специфического иммунного ответа
- •8.4.2. Участие цитокинов в регуляции иммунных реакций
- •8.4.4. Регуляторные иммунонейроэндокринные сети
- •9.2. Функции сердца
- •9.2.1. Общие принципы строения
- •9.2.2. Свойства сердечной мышцы
- •9.2.3. Механическая работа сердца
- •9.2.4. Тоны сердца
- •9.2.5. Основные показатели деятельности сердца
- •9.4. Регуляция работы сердца
- •9.4.1. Внутриклеточная регуляция
- •9.4.2. Межклеточная регуляция
- •9.4.3. Внутрисердечная нервная регуляция
- •9.4.4. Экстракардиальная нервная регуляция
- •9.4.5. Гуморальная регуляция
- •9.4.6. Тонус сердечных нервов
- •9.4.7. Гипоталамическая регуляция
- •9.4.8. Корковая регуляция
- •9.4.9. Рефлекторная регуляция
- •9.4.10. Эндокринная функция сердца
- •9.5. Сосудистая система
- •9.5.1. Эволюция сосудистой системы
- •9.5.2. Функциональные типы сосудов.
- •9.5.3. Основные законы гемодинамики
- •9.5.4. Давление в артериальном русле
- •9.5.5. Артериальный пульс
- •9.5.6. Капиллярный кровоток
- •9.5.7. Кровообращение в венах
- •9.6. Регуляция кровообращения
- •9.6.1. Местные механизмы регуляции кровообращения
- •9.6.2. Нейрогуморальная регуляция системного кровообращения
- •9.7. Кровяное депо
- •9.8.2. Мозговое кровообращение
- •9.8.3. Легочное кровообращение
- •9.8.4. Кровообращение в печени
- •9.8.5. Почечное кровообращение
- •9.8.6. Кровообращение в селезенке
- •9.9. Кровообращение плода
- •9.10.3. Состав, свойства, количество лимфы
- •9.10.4. Лимфообразование
- •9.10.5. Лимфоотток
- •10.1. Эволюция типов дыхания
- •10.1.1. Дыхание беспозвоночных животных
- •10.1.2. Дыхание позвоночных животных
- •10.2. Дыхательный акт и вентиляция легких
- •10.2.1. Дыхательные мышцы
- •10.2.2. Дыхательный акт
- •10.2.3. Вентиляция легких и внутрилегочный объем газов
- •10.2.4. Соотношение вентиляции и перфузии легких
- •10.2.5. Паттерны дыхания
- •10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер
- •10.3.2. Транспорт кислорода кровью
- •10.3.3. Транспорт углекислого газа кровью
- •10.3.4. Транспорт кислорода и углекислого газа в тканях
- •10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания
- •10.4.3. Механорецепторы дыхательной системы
- •10.4.4. Роль надмостовых структур
- •10.5.2. Влияние уровня бодрствования
- •10.5.3. Эмоциональные и стрессорные факторы
- •10.5.4. Мышечная деятельность
- •11.1. Источники энергии и пути ее превращения в организме
- •11.1.1. Единицы измерения энергии
- •11.1.3.Методы исследования обмена энергии
- •11.1.4. Основной обмен
- •11.1.5. Обмен в покое и при мышечной работе
- •11.1.7. Запасы энергии
- •11.2. Питание
- •11.2.1. Потребность в пище и рациональное питание
- •11.2.2. Потребность в воде
- •11.2.3. Потребность в минеральных веществах
- •11.2.4. Потребность в углеводах
- •11.2.5. Потребность в липидах
- •11.2.6. Потребность в белках
- •11.2.7. Потребность в витаминах
- •11.2.8. Потребность в пищевых волокнах
- •11.3. Терморегуляция
- •11.3.1. Пойкилотермия и гомойотермия
- •11.3.2. Температура тела
- •11.3.3. Терморецепция, субъективные температурные ощущения и дискомфорт
- •11.3.4. Центральные (мозговые) механизмы терморегуляции
- •11.3.5. Теплопродукция
- •11.3.6. Теплоотдача
- •11.3.9. Тепловая и холодовая адаптация
- •11.3.10. Сезонная спячка
- •11.3.11. Онтогенез терморегуляции
- •11.3.12. Лихорадка
- •12.1.2. Регуляторная часть пищеварительной системы
- •12.1.3. Интеграция нейромедиаторных и гормональных факторов в пищеварительной cистеме
- •12.1.4. Типы пищеварения
- •12.2. Секреторная функция
- •12.2.1. Слюнные железы
- •12.2.2. Железы желудка
- •12.2.3. Поджелудочная железа
- •12.2.4. Желчеотделение и желчевыделение
- •12.2.5. Секреция кишечных желез
- •12.3. Переваривание пищевых веществ
- •12.4. Мембранное пищеварение и всасывание
- •12.4.2. Всасывание
- •12.5. Моторная функция
- •12.5.1. Сопряжение возбуждения с сокращением в гладкомышечных клетках
- •12.5.2. Регуляция сократительной активности гладких мышц желудочно-кишечного тракта
- •12.5.3. Моторная функция различных отделов желудочно-кишечного тракта
- •12.5.4. Периодическая моторная деятельность желудочно-кишечного тракта
- •12.6.2. Насыщение
- •13.1. Водные фазы
- •13.2. Эволюция осморегуляции
- •13.3. Выделительные органы беспозвоночных животных различных типов
- •13.4. Почка позвоночных животных
- •13.5. Структура и функции почки млекопитающих
- •13.6.2. Клубочковая фильтрация
- •13.6.3. Реабсорбция в канальцах
- •13.6.5. Синтез веществ в почке
- •13.6.6. Осмотическое разведение и концентрирование мочи
- •13.6.7. Роль почек в осморегуляции и волюморегуляции
- •13.6.8. Механизм участия почек в регуляции кислотно-основного равновесия
- •13.6.9. Экскреторная функция почки
- •13.7. Нервная регуляция деятельности почки
- •13.8. Инкреторная функция почки
- •13.9. Метаболическая функция почки
- •13.10. Выделение мочи
- •14.2. Мужские половые органы
- •14.4. Половое созревание
- •14.5. Половое влечение
- •14.6. Половой акт
- •14.7. Половая жизнь
- •1) Парасимпатические из крестцового отдела (рефлекторные и психогенные влияния); 2) симпатические из пояснично-грудного отдела (психогенные влияния)
- •14.8.2. Половые рефлексы у женщин
- •14.9. Половой цикл
- •14.10. Оплодотворение
- •14.11. Беременность
- •14.11.1. Плацента
- •14.11.2. Плод
- •14.11.3. Состояние организма матери при беременности
- •14.11.4. Многоплодная беременность
- •14.11.5. Латентная стадия беременности
- •14.11.6. Беременность у животных
- •14.12. Роды
- •14.13.2. Физиология органов размножения самок
- •14.13.3. Инкубация
- •14.14. Лактация
- •15.2. Проявления старения
- •15.3. Профилактика старения
13.6.7. Роль почек в осморегуляции и волюморегуляции
Осморегуляция. Почки являются основным эффекторным органом системы осморегуляции. Они обеспечивают выделение избытка воды в виде гипотонической мочи при поступлении воды в организм или экономят воду и экскретируют мочу, гипертоническую по отношению к плазме крови, при обезвоживании. При избыточном содержании воды в организме концентрация растворенных осмотически активных веществ в крови снижается и ее осмотическое давление падает. Это уменьшает активность центральных осморецепторов, расположенных в области супраоптического ядра гипоталамуса, а также периферических осморецепторов, имеющихся в печени, почке, селезенке и ряде других органов. Уменьшение активности осморецепторов снижает секрецию антидиуретического гормона (АДГ) нейрогипофизом и приводит к возрастанию выделения воды почкой (рис. 13.14).
Рис. 13.14 Участие почки в регуляции водно-солевого обмена
1- ЦНС, 2 - гипоталамус, 3 - нейрогипофиз, 4 - почка, 5 - поджелудочная железа, 6 - надпочечник;
При обезвоживании организма, при введении в сосудистое русло гипертонического раствора хлористого натрия увеличивается концентрация осмотически активных веществ в плазме крови, возбуждаются осморецепторы, стимулируются нейроны супраоптического ядра, усиливается секреция АДГ, возрастает реабсорбция воды в канальцах, уменьшается мочеотделение и выделяется осмотически концентрированная моча. Установлено, что у человека в норме при осмоляльности крови около 280 мосм/кг H2O полностью прекращается секреция АДГ и почка выделяет наибольшие количества воды. При обезвоживании когда осмоляльность крови возрастает до 295 мосм/кг Н2О, секреция АДГ достигает максимума и обнаруживается пик осмотического концентрирования мочи в почке. В эксперименте показано, что секреция АДГ возрастает при раздражении не только осморецепторов, но и специфических натриорецепторов. После введения в область III желудочка мозга гипертонического раствора NaСl наступает антидиурез, а после введения в ту же область гипертонических растворов сахара мочеотделение не уменьшается.
Осморецепторы реагируют на сдвиги концентрации осмотически активных веществ в плазме крови. При увеличении осмоляльности плазмы крови на 1% (около 3 мосм/л) концентрация аргинин-вазопрессина, являющегося антидиуретическим гормоном у человека и многих других млекопитающих, возрастает на 1 пг/мл плазмы. Повышение концентрации осмотически активных веществ в плазме на 1 мосм/кг воды вызывает благодаря выделению АДГ увеличение осмотической концентрации мочи почти на 100 мосм/кг H2O, а переход от состояния водного диуреза до максимального осмотического концентрирования мочи требует всего 10-кратного возрастания АДГ в крови - с 0,5 до 5 пг/мл.
Волюморецепция. Помимо информации от осморецепторов и натриорецепторов уровень секреции АДГ зависит и от активности волюморецепторов, реагирующих на изменение объема внутрисосудистой и внеклеточной жидкости. Ведущее значение в регуляции секреции АДГ имеют те волюморецепторы, которые реагируют на изменение напряжения сосудистой стенки. В первую очередь это рецепторы левого предсердия, импульсы от которых передаются в ЦНС по афферентным волокнам блуждающего нерва. При увеличении кровенаполнения левого предсердия активируются волюморецепторы и угнетается секреция АДГ, тем самым усиливается мочеотделение. В предсердии вырабатывается гормон, увеличивающий выделение ионов Na+ почкой и получивший название атриальный натрийуретический пептид.
Рассмотрим особенности реакции почки при возбуждении волюморецепторов и осморецепторов. Активация только волюморецепторов возникает в ответ на увеличение объема внутрисосудистой жидкости при неизмененной концентрации в ней осмотически активных веществ. Это приводит к повышению экскреции солей натрия и воды. Одновременная активация волюморецепторов и осморецепторов может наступить при потреблении больших количеств воды, в этом случае в основном усиливается выведение воды. Ведущую роль в изолированном осморегулирующем рефлексе играет уменьшение секреции АДГ, в результате снижается реабсорбция воды и усиливается ее экскреция.
Увеличение объема внеклеточной жидкости, возрастание объема крови служат стимулом для волюморегулирующего рефлекса. В эксперименте адекватным раздражителем системы регуляции объема внеклеточной жидкости может служить введение в кровеносный сосуд больших количеств изотоничного плазме крови физиологического раствора. Возрастание притока крови к сердцу, растяжение стенки предсердия стимулируют волюморецепторы и секрецию из клеток предсердия атриального натрийуретического пептида. Под влиянием этого гормона усиливается выделение ионов натрия и воды почкой.
Стимуляция волюморецепторов рефлекторно изменяет характер импульсации иннервирующих почку симпатических нервов и снижает реабсорбцию натрия и воды в канальцах. Возрастание объема крови способствует растяжению афферентной артериолы клубочка. Это сопровождается изменением активности юкстагломерулярного аппарата, уменьшением секреции фермента ренина, благодаря чему снижается образование в крови из ангиотензиногена ангиотензина I. После отщепления от него двух аминокислот образуется ангиотензин II, который вызывает ряд эффектов, в том числе стимулирует секрецию альдостерона. Когда снижается количество ангиотензина, падает и поступление в кровь альдостерона, что приводит к уменьшению реабсорбции натрия в канальцах. Активация волюморегулирующего рефлекса снижает секрецию вазопрессина, тем самым уменьшается реабсорбция воды и повышается ее выделение почкой.
Клеточное действие вазопрессина. Воздействие вазопрессина начинается с активации рецепторов, расположенных на базальной и латеральных мембранах клеток конечных частей дистального сегмента нефрона и собирательных трубок. Существует два типа рецепторов вазопрессина: V1 и V2. Первый тип рецепторов после взаимодействия с вазопрессином активирует образование таких вторичных мессенджеров, как инозитолтрифосфат и диацилглицерол. Стимуляция вазопрессином V2-рецепторов завершается активацией фермента аденилатциклазы, в результате из АТФ образуется вторичный мессенджер - цАМФ. Это физиологически активное вещество внутри клетки вызывает ряд превращений, приводящих к увеличению проницаемости для воды апикальной (люминальной) плазматической мембраны, обращенной в просвет канальца.
В обычных условиях, когда в крови нет вазопрессина, люминальная мембрана непроницаема для воды, клетка не пропускает через себя воду и реабсорбция воды в собирательных трубках практически не происходит. После секреции вазопрессина в кровь и стимуляции им V2-рецепторов у внутренней поверхности базальной плазматической мембраны образуется цАМФ. Этот вторичный мессенджер должен пересечь клетку и у противоположной плазматической мембраны активировать ряд процессов, завершающихся увеличением проницаемости для воды.
В цитоплазме клетки содержатся агрефоры. - в них находятся так называемые "водные каналы" (аквапорины), которые перемещаются к люминальной мембране и встраиваются в нее. Для осуществления этого процесса необходимо участие микрофиламентов и микротрубочек. В конечном счете цАМФ способствует встраиванию в люминальную мембрану агрегатов внутримембранных частиц;
чем больше образуется цАМФ, тем большая поверхность мембраны будет занята агрегатами частиц и выше становится проницаемость для воды. Восстановление исходной проницаемости зависит от скорости ферментативного разрушения цАМФ, эту функцию выполняет имеющаяся внутри клетки фосфодиэстераза цАМФ.
Таким образом, активация V2-рецепторов вазопрессином сопровождается образованием цАМФ и увеличением проницаемости для воды.
Выше речь шла о V1-рецепторах. Их физиологическое значение состоит в модуляции, регуляции силы ответа клетки, они обеспечивают осуществление своеобразной системы обратной связи. При регуляции водного обмена в организме ведущую роль играет лишь один гормон - вазопрессин.
В регуляции ионного обмена обычно природа использует два гормона, оказывающие противоположное физиологическое действие, например кальцитонин, снижающий концентрацию кальция в крови, и паратгормон, увеличивающий ее.
В случае вазопрессина можно описать уникальный способ физиологической регуляции, когда один гормон с помощью рецепторов двух разных типов стимулирует реакцию и модифицирует ее. Активация V1-рецепторов и образование описанных выше вторичных мессенджеров способствуют снижению силы действия цАМФ. Экспериментально можно активировать только аденилатциклазу и устранить фосфоинозитидный ответ, связанный со стимуляцией V1-рецепторов. В таком случае сила ответа на вазопрессин станет выше.
Эти данные позволяют представить целостную картину регуляции водного обмена: от возбуждения осморецепторов и секреции вазопрессина до конечных этапов внутриклеточных изменений, сопровождающихся возрастанием проницаемости мембраны для воды. Поток воды при увеличении ее реабсорбции растет в десятки раз.
Выше шла речь о процессах, происходящих в базальной мембране, цитоплазме и апикальной мембране. Такие большие физиологические изменения, сопровождающиеся возрастанием потока воды, затрагивают и внешнюю поверхность клетки. После добавления вазопрессина наблюдается экзоцитоз - выделение веществ со стороны апикальной мембраны на ее внешнюю поверхность. Среди этих веществ находятся компоненты гликокаликса, а также, вероятно, и ряд гидролитических ферментов.
А. Г. Гинецинский высказал предположение, что на одном из этапов действия АДГ в процесс вовлекается гиалуронатгидролаза, деполимеризующая гликозаминогликаны в межклеточном веществе почки. В пользу такого предположения свидетельствуют данные, что введение в кровь антисыворотки к почечной гиалуронатгидролазе уменьшает способность АДГ увеличивать проницаемость для воды и ее реабсорбцию.