
- •1.1. Общая физиология нервной системы
- •1.1.1. Основные типы строения нервной системы
- •1.1.2. Мембранные потенциалы нервных элементов
- •1.1.3. Потенциалы и трансмембранные токи при возбуждении
- •1 М и толщиной 1 мкм выражается огромной цифрой - 10 Ом. Подобное сопротивление имел бы кабель длиной 10 км.
- •1.1.5. Межклеточные пространства в нервной системе
- •1.1.6. Аксонный транспорт
- •1.1.7. Физиология синапсов
- •1.1.8. Нервные сети и основные законы их функционирования
- •1.1.9. Рефлексы и рефлекторные дуги
- •1.1.10. Элементы эволюции нервной системы
- •1.2. Общая физиология мышц
- •1.2.1. Структура и иннервация поперечнополосатых мышц позвоночных животных
- •1.2.2. Механизм мышечного возбуждения
- •1.2.3. Передача сигнала с плазмалеммы на сократительный аппарат миофибрилл
- •1.2.4. Структура саркомера и механизм сокращения мышечного волокна
- •1.2.5. Механика мышцы
- •1.2.6. Энергетика мышцы
- •1.2.7. Особенности мышцы сердца позвоночных животных
- •1.2.8. Общая физиология гладких мышц позвоночных животных
- •1.2.9. Характеристика некоторых мышц беспозвоночных животных
- •1.2.10. Элементы эволюции мышц
- •1.2.11. Электрические органы рыб
- •1.2.12. Немышечные формы двигательной активности
- •1.3. Физиология секреторной клетки
- •1.3.1. Поступление предшественников секрета в клетку
- •1.3.2. Выведение веществ из клетки
- •2.1. Совершенствование регуляторных механизмов в процессе эволюции
- •2.2. Характеристика гуморальных механизмов регуляции
- •2.2.1. Основные особенности эволюции гормональных регуляторных механизмов
- •2.2.2. Регуляция функций эндокринной системы
- •2.2.3. Функциональное значение гормонов
- •2.2.4. Механизм действия гормонов
- •2.2.5. Классификация гормонов
- •2.3. Единство нервных и гуморальных механизмов регуляции
- •2.3.1. Саморегуляция функций организма
- •2.3.2. Обратная связь как один из ведущих механизмов в регуляции функций организма
- •2.3.3. Рефлекторный принцип регуляции функций
- •2.4. Общие черты компенсаторно-приспособительных реакций организма
- •3.1.2. Нервная система позвоночных животных
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо-гипофизарная система
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3) После исчезновения эти навыки самостоятельно не восстанавливаются.
- •3.14.2. Сон как форма приобретенного поведения
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17.2. Высшие интегративные системы мозга
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3) Описать структуру среды как закон связей между ее наиболее существенными переменными; 4) определить ведущее кинематическое звено для выполнения предстоящего двигательного акта.
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека-оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •4.1.2. Преобразование сигналов в рецепторах
- •4.1.3. Адаптация рецепторов
- •4.1.4. Сенсорные пути
- •4.1.5. Сенсорное кодирование
- •4.2. Соматическая сенсорная система
- •4.2.1. Соматическая сенсорная система беспозвоночных животных
- •4.2.2. Соматическая сенсорная система позвоночных животных
- •4.3. Скелетно-мышечная, или проприоцептивная, сенсорная система
- •4.3.1. Скелетно-мышечная сенсорная система беспозвоночных животных
- •4.3.2. Скелетно-мышечная сенсорная система позвоночных животных
- •4.4. Сенсорная система боковой линии
- •4.4.2. Электрорецепторы
- •4.4.3. Восходящие пути
- •4.5. Гравитационная сенсорная система
- •4.5.1. Гравитационная сенсорная система беспозвоночных животных
- •4.5.2. Гравитационная сенсорная система позвоночных животных
- •4.6. Слуховая сенсорная система
- •4.6.1. Физические характеристики звуковых сигналов
- •4.6.2. Слуховая сенсорная система беспозвоночных животных
- •4.6.3. Слуховая сенсорная система позвоночных животных
- •4.6.4. Эхолокация
- •4.7. Хеморецепторные сенсорные системы
- •4.7.1. Хеморецепторные сенсорные системы беспозвоночных животных
- •4.7.2. Хеморецепторные сенсорные системы позвоночных животных
- •4.8. Зрительная сенсорная система
- •4.8.1. Организация фоторецепторов
- •4.8.2. Механизмы фоторецепции
- •4.8.3. Зрительная сенсорная система беспозвоночных животных
- •4.8.4. Зрительная сенсорная система позвоночных животных
- •5.1. Дуга автономного рефлекса
- •5.1.1. Подразделение автономной нервной системы
- •5.1.2. Анатомические структуры
- •5.1.4. Различия в конструкции автономной и соматической нервной системы
- •5.1.5. Чувствительное звено дуги автономного рефлекса
- •5.1.6. Ассоциативное (вставочное) звено
- •5.1.7. Эфферентное звено
- •5.2. Синаптическая передача
- •5.2.1. Ацетилхолин
- •5.2.2. Норадреналин и адреналин
- •5.2.3. Трансдукторы
- •5.2.4. Серотонин
- •5.2.5. Аденозинтрифосфат (атф)
- •5.2.6. Вероятные кандидаты в медиаторы
- •5.2.7. Активные факторы
- •5.3.2. Аксон-рефлекс
- •5.3.3. Висцеросоматический рефлекс
- •5.3.4. Висцеросенсорный рефлекс
- •5.4. Влияние автономной нервной системы на деятельность эффекторных органов
- •5.4.1. Адаптационно-трофическая функция симпатической нервной системы
- •5.4.2. Роль парасимпатической нервной системы в регуляции висцеральных функций
- •5.4.3. Участие метасимпатической нервной системы в регуляции висцеральных функций
- •5.4.4. Тоническая активность
- •5.5.2. Стволовые центры
- •5.5.3. Гипоталамические центры
- •5.5.4. Лимбическая система
- •5.5.5. Мозжечок
- •5.5.6. Ретикулярная формация
- •5.5.7. Кора больших полушарий
- •6.1. Значение и место эндокринной регуляции в общей системе интеграционных механизмов
- •6.1.1. Методы изучения функций желез внутренней секреции
- •6.1.2. Понятие о нейросекреции
- •6.2.1. Гипоталамо-нейрогипофизарная система
- •6.2.2. Гипоталамо-аденогипофизарная система
- •6.2.3. Гипофиз
- •6.2.4. Шишковидное тело
- •6.3.2. Надпочечник и его гормоны
- •6.3.3. Гонады и половые гормоны
- •6.4.2. Гормональная регуляция водно-солевого гомеостаза
- •6.5. Поджелудочная железа и ее гормоны
- •6.6. Гормоны пищеварительного тракта
- •6.7. Гормоны сердечно-сосудистой системы
- •6.7.1. Гормоны сердца
- •6.7.2. Гормоны эндотелия
- •6.8. Гормоны плазмы и клеток крови
- •6.9. Гормонопоэз и основные механизмы трансдукции гормонального сигнала
- •6.10. Рецепторы гормонов
- •7.1. Эволюция внутренней среды организма
- •7.2. Основные механизмы поддержания постоянства внутренней среды организма. Понятие о гомеостазе
- •7.3. Понятие о системе крови
- •7.3.1. Основные функции крови
- •7.3.2. Объем и состав крови
- •7.3.3. Физико-химические свойства крови
- •7.4. Плазма крови
- •5 Г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.
- •7.5. Форменные элементы крови
- •7.5.1. Эритроциты
- •7.5.2. Пигменты крови
- •7.5.3.Скорость оседания эритроцитов (соэ)
- •7.5.4. Лейкоциты
- •7.5.5. Тромбоциты
- •7.6. Гемостаз (остановка кровотечения)
- •7.6.1. Свертывание крови
- •7.6.3. Противосвертывающие механизмы
- •7.7. Группы крови
- •7.7.2. Резус-фактор
- •7.8. Кроветворение и его регуляция
- •7.8.1. Эритропоэз
- •7.8.2. Лейкопоэз. Тромбоцитопоэз
- •7.9. Лимфа
- •8.1. Компоненты иммунной системы
- •8. 2. Механизмы неспецифического (врожденного) иммунитета
- •8.2.1. Фагоцитоз
- •8.2.2. Внеклеточное уничтожение (цитотоксичность)
- •8.2.3. Разрушение чужеродных клеток с помощью гуморальных механизмов
- •8.2.4. Роль острой воспалительной реакции в механизмах неспецифической резистентности организма
- •8.3. Механизмы специфического приобретенного иммунитета
- •8.3.1. Характеристика клеток, участвующих в реакциях специфического иммунитета
- •8.3.2. Иммуноглобулины, структура и роль в реализации специфического иммунного ответа
- •8.4.2. Участие цитокинов в регуляции иммунных реакций
- •8.4.4. Регуляторные иммунонейроэндокринные сети
- •9.2. Функции сердца
- •9.2.1. Общие принципы строения
- •9.2.2. Свойства сердечной мышцы
- •9.2.3. Механическая работа сердца
- •9.2.4. Тоны сердца
- •9.2.5. Основные показатели деятельности сердца
- •9.4. Регуляция работы сердца
- •9.4.1. Внутриклеточная регуляция
- •9.4.2. Межклеточная регуляция
- •9.4.3. Внутрисердечная нервная регуляция
- •9.4.4. Экстракардиальная нервная регуляция
- •9.4.5. Гуморальная регуляция
- •9.4.6. Тонус сердечных нервов
- •9.4.7. Гипоталамическая регуляция
- •9.4.8. Корковая регуляция
- •9.4.9. Рефлекторная регуляция
- •9.4.10. Эндокринная функция сердца
- •9.5. Сосудистая система
- •9.5.1. Эволюция сосудистой системы
- •9.5.2. Функциональные типы сосудов.
- •9.5.3. Основные законы гемодинамики
- •9.5.4. Давление в артериальном русле
- •9.5.5. Артериальный пульс
- •9.5.6. Капиллярный кровоток
- •9.5.7. Кровообращение в венах
- •9.6. Регуляция кровообращения
- •9.6.1. Местные механизмы регуляции кровообращения
- •9.6.2. Нейрогуморальная регуляция системного кровообращения
- •9.7. Кровяное депо
- •9.8.2. Мозговое кровообращение
- •9.8.3. Легочное кровообращение
- •9.8.4. Кровообращение в печени
- •9.8.5. Почечное кровообращение
- •9.8.6. Кровообращение в селезенке
- •9.9. Кровообращение плода
- •9.10.3. Состав, свойства, количество лимфы
- •9.10.4. Лимфообразование
- •9.10.5. Лимфоотток
- •10.1. Эволюция типов дыхания
- •10.1.1. Дыхание беспозвоночных животных
- •10.1.2. Дыхание позвоночных животных
- •10.2. Дыхательный акт и вентиляция легких
- •10.2.1. Дыхательные мышцы
- •10.2.2. Дыхательный акт
- •10.2.3. Вентиляция легких и внутрилегочный объем газов
- •10.2.4. Соотношение вентиляции и перфузии легких
- •10.2.5. Паттерны дыхания
- •10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер
- •10.3.2. Транспорт кислорода кровью
- •10.3.3. Транспорт углекислого газа кровью
- •10.3.4. Транспорт кислорода и углекислого газа в тканях
- •10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания
- •10.4.3. Механорецепторы дыхательной системы
- •10.4.4. Роль надмостовых структур
- •10.5.2. Влияние уровня бодрствования
- •10.5.3. Эмоциональные и стрессорные факторы
- •10.5.4. Мышечная деятельность
- •11.1. Источники энергии и пути ее превращения в организме
- •11.1.1. Единицы измерения энергии
- •11.1.3.Методы исследования обмена энергии
- •11.1.4. Основной обмен
- •11.1.5. Обмен в покое и при мышечной работе
- •11.1.7. Запасы энергии
- •11.2. Питание
- •11.2.1. Потребность в пище и рациональное питание
- •11.2.2. Потребность в воде
- •11.2.3. Потребность в минеральных веществах
- •11.2.4. Потребность в углеводах
- •11.2.5. Потребность в липидах
- •11.2.6. Потребность в белках
- •11.2.7. Потребность в витаминах
- •11.2.8. Потребность в пищевых волокнах
- •11.3. Терморегуляция
- •11.3.1. Пойкилотермия и гомойотермия
- •11.3.2. Температура тела
- •11.3.3. Терморецепция, субъективные температурные ощущения и дискомфорт
- •11.3.4. Центральные (мозговые) механизмы терморегуляции
- •11.3.5. Теплопродукция
- •11.3.6. Теплоотдача
- •11.3.9. Тепловая и холодовая адаптация
- •11.3.10. Сезонная спячка
- •11.3.11. Онтогенез терморегуляции
- •11.3.12. Лихорадка
- •12.1.2. Регуляторная часть пищеварительной системы
- •12.1.3. Интеграция нейромедиаторных и гормональных факторов в пищеварительной cистеме
- •12.1.4. Типы пищеварения
- •12.2. Секреторная функция
- •12.2.1. Слюнные железы
- •12.2.2. Железы желудка
- •12.2.3. Поджелудочная железа
- •12.2.4. Желчеотделение и желчевыделение
- •12.2.5. Секреция кишечных желез
- •12.3. Переваривание пищевых веществ
- •12.4. Мембранное пищеварение и всасывание
- •12.4.2. Всасывание
- •12.5. Моторная функция
- •12.5.1. Сопряжение возбуждения с сокращением в гладкомышечных клетках
- •12.5.2. Регуляция сократительной активности гладких мышц желудочно-кишечного тракта
- •12.5.3. Моторная функция различных отделов желудочно-кишечного тракта
- •12.5.4. Периодическая моторная деятельность желудочно-кишечного тракта
- •12.6.2. Насыщение
- •13.1. Водные фазы
- •13.2. Эволюция осморегуляции
- •13.3. Выделительные органы беспозвоночных животных различных типов
- •13.4. Почка позвоночных животных
- •13.5. Структура и функции почки млекопитающих
- •13.6.2. Клубочковая фильтрация
- •13.6.3. Реабсорбция в канальцах
- •13.6.5. Синтез веществ в почке
- •13.6.6. Осмотическое разведение и концентрирование мочи
- •13.6.7. Роль почек в осморегуляции и волюморегуляции
- •13.6.8. Механизм участия почек в регуляции кислотно-основного равновесия
- •13.6.9. Экскреторная функция почки
- •13.7. Нервная регуляция деятельности почки
- •13.8. Инкреторная функция почки
- •13.9. Метаболическая функция почки
- •13.10. Выделение мочи
- •14.2. Мужские половые органы
- •14.4. Половое созревание
- •14.5. Половое влечение
- •14.6. Половой акт
- •14.7. Половая жизнь
- •1) Парасимпатические из крестцового отдела (рефлекторные и психогенные влияния); 2) симпатические из пояснично-грудного отдела (психогенные влияния)
- •14.8.2. Половые рефлексы у женщин
- •14.9. Половой цикл
- •14.10. Оплодотворение
- •14.11. Беременность
- •14.11.1. Плацента
- •14.11.2. Плод
- •14.11.3. Состояние организма матери при беременности
- •14.11.4. Многоплодная беременность
- •14.11.5. Латентная стадия беременности
- •14.11.6. Беременность у животных
- •14.12. Роды
- •14.13.2. Физиология органов размножения самок
- •14.13.3. Инкубация
- •14.14. Лактация
- •15.2. Проявления старения
- •15.3. Профилактика старения
9.5.3. Основные законы гемодинамики
Гемодинамика - раздел физиологии кровообращения, использующий законы гидродинамики (физические явления движения жидкости в замкнутых сосудах) для исследования причин, условий и механизмов движения крови в сердечно-сосудистой системе. Гемодинамика определяется двумя силами: давлением, которое оказывает влияние на жидкость, и сопротивлением, которое она испытывает при трении о стенки сосудов и вихревых движениях.
Силой, создающей давление в сосудистой системе, является сердце. У человека среднего возраста при каждом сокращении сердца в сосудистую систему выталкивается 60-70 мл крови (систолический объем) или 4-5 л/мин (минутный объем). Движущей силой крови служат разность давлений, возникающая в начале и конце трубки.
Почти во всех отделах сосудистой системы кровоток носит ламинарный характер - кровь движется отдельными слоями параллельно оси сосуда. При этом слой, прилежащий к стенке сосуда, остается практически неподвижным, по этому слою скользит второй, а по нему, в свою очередь, третий и т. д. Форменные элементы крови составляют центральный, осевой поток, плазма движется ближе к стенке сосуда. Следовательно, чем меньше диаметр сосуда, тем ближе располагаются центральные слои к стенке и больше тормозится скорость их движения из-за вязкого взаимодействия со стенкой. В целом это означает, что в мелких сосудах скорость кровотока ниже, чем в крупных. В правильности этого положения легко убедиться, сопоставив скорости кровотока в разных участках сосудистого русла. В аорте она составляет 50-70 см/с, в артериях - от 40 до 10, артериолах - 10-0,1, капиллярах - меньше 0.1, венулах - меньше 0,3, венах - 0,3-5,0, полой вене - 5-20 см/с.
Наряду с ламинарным в сосудистой системе существует турбулентное движение с характерным завихрением крови. Частицы крови перемещаются не только , параллельно оси сосуда, как при ламинарном кровотоке, но и перпендикулярно ей. Результатом такого сложного перемещения является значительное увеличение внутреннего трения жидкости. В этом случае объемная скорость тока крови будет уже не пропорциональной градиенту давления, а примерно равной квадратному корню из него. Турбулентное движение обычно возникает в местах разветвлений и сужений артерий, в участках крутых изгибов сосудов.
Кровь представляет собой взвесь форменных элементов в коллоидно-солевом растворе, она обладает определенной вязкостью, не являющейся величиной постоянной. При протекании крови через капилляр, диаметр которого меньше 1 мм, вязкость уменьшается. Последующее уменьшение диаметра капилляра еще более уменьшает вязкость протекающей крови. Этот гемодинамический парадокс объясняется тем, что во время движения крови эритроциты сосредоточиваются в центре потока. Пристеночный же слой состоит из чистой плазмы с гораздо меньшей вязкостью, по которому легко скользят форменные элементы. В итоге улучшаются условия тока крови и происходит снижение перепадов давления, что, в общем, компенсирует увеличение вязкости крови и снижение скорости ее тока в мелких артериях. Переход от ламинарного движения крови к турбулентному сопровождается значительным ростом сопротивления течению крови.
Соотношение между характером течения жидкости в жестких трубках и давлением обычно определяют по формуле Пуазейля. Используя эту формулу, можно вычислить сопротивление R току крови в зависимости от ее вязкости ?, длины l и радиуса r сосуда:
R=8l?/?r2
Сосудистую систему в целом можно представить в виде последовательно и параллельно соединенных трубок разной длины и диаметра. В случае последовательного соединения общее сопротивление составляет сумму сопротивлений отдельных сосудов: R = R1+ R2 + ... + Rn.При параллельном соединении величину сопротивления вычисляют по другой формуле: 1/R = 1/R1 + 1/R2 + ... + + 1/Rn. Учитывая сложность геометрии сосудов целого организма, ее непостоянство, зависящее от открытия и закрытия шунтов, коллатералей, степени сокращения гладких мышц, эластичности стенок, изменения вязкости крови и других причин, в реальных условиях рассчитать величину сосудистого сопротивления трудно. Поэтому его принято определять как частное от деления кровяного давления Р на минутный объем крови Q:
R = P/Q.
Для всей сосудистой системы организма в целом эта формула применима лишь при том условии, если в конце системы, т. е. в полых венах вблизи места их впадения в сердце, давление будет близким к нулю. Соответственно при необходимости вычисления сопротивления отдельного участка сосудистой системы формула приобретает вид
R=Р1-Р2/Q
Значения P1 и P2 отражают давление в начале и конце определяемого участка.
Основная кинетическая энергия, необходимая для движения крови, сообщается ей сердцем во время систолы. Одна часть этой энергии расходуется на проталкивание крови, другая - превращается в потенциальную энергию растягиваемой во время систолы эластичной стенки аорты, крупных и средних артерий. Их свойства зависят от наличия эластических и коллагеновых волокон, растяжимость которых примерно в шесть раз выше, чем, например, резиновых нитей той же толщины. Во время диастолы энергия стенки аорты и сосудов переходит в кинетическую энергию движения крови.
Кроме эластичности и растяжимости, т. е. пассивных свойств, сосуды обладают еще способностью активно реагировать на изменение в них кровяного давления. При повышении давления гладкие мышцы стенок сокращаются и диаметр сосуда уменьшается. Таким образом, пульсирующий ток крови, создаваемый функцией сердца, благодаря особенностям аорты и крупных сосудов выравнивается и становится относительно непрерывным.
Основными показателями гемодинамики являются объемная скорость, скорость кругооборота крови, давление в разных областях сосудистой системы.
Объемная скорость движения крови характеризует ее количество (в миллилитрах), протекающее через поперечное сечение сосуда за единицу времени (1 мин). Объемная скорость кровотока прямо пропорциональна перепаду давления в начале и конце сосуда и обратно пропорциональна его сопротивлению току крови. В организме отток крови от сердца соответствует ее притоку к нему. Это означает, что объем крови, протекающей за единицу времени через всю артериальную и всю венозную систему большого и малого круга кровообращения, одинаков.
Линейная скорость движения крови (v) характеризует скорость перемещения ее частиц вдоль сосуда при ламинарном потоке. Она выражается в сантиметрах в секунду и определяется как отношение объемной скорости кровотока Q к площади поперечного сечения сосуда ?r2:
v=Q/?r2
Полученная таким образом величина является сугубо средним показателем, так как, согласно законам ламинарного движения, скорость перемещения крови в центре сосуда является максимальной и падает в слоях, прилежащих к сосудистой стенке.
Линейная скорость кровотока различна и в отдельных участках сосудистого русла по ходу сосудистого дерева. Она зависит от общей суммы площади просветов сосудов этого калибра в рассматриваемом участке. Наименьшим поперечным сечением характеризуется аорта, в связи с чем и скорость движения крови в ней самая большая - 50-70 см/с. Наибольшей суммарной площадью поперечного сечения обладают капилляры, у млекопитающих она приблизительно в 600-800 раз больше площади поперечного сечения аорты. Соответственно и скорость крови здесь около 0,05 см/с. В артериях она составляет 20-40 см/с, в артериолах - 0,5 см/с. В силу того, что при слиянии вен их суммарный просвет уменьшается, линейная скорость кровотока снова возрастает, достигая в полой вене 20 см/с (рис. 9.30).
Кровь выталкивается отдельными порциями, поэтому кровоток в аорте и артериях пульсирует. При этом его линейная скорость возрастает в фазе систолы и снижается во время диастолы. В капиллярной сети в силу особенностей строения предшествующих ей артерий пульсовые толчки исчезают и линейная скорость кровотока приобретает постоянный характер.
Рис. 9.30 Соотношение объемной и линейной скоростей кровотока в разных отделах сосудистого русла
А - линейная скорость кровотока по ходу сосудистого русла; Б - различные по высоте, но равные по объему цилиндры, изображающие суммарную объемную скорость кровотока; В - суммарный просвет сосудов: 1 - артерии, 2 - капилляры, 3 - вены (капиллярный просвет должен превышать просвет аорты в 600-800 раз); hi, h2, h3 - высота цилиндра (длина отрезка сосуда); SI, S2, S3 - суммарный просвет сосудов в разных отделах русла.
Скорость кругооборота крови отражает время, за которое частица крови проходит большой и малый круг кровообращения. Для определения скорости кругооборота обычно используют введение радиоактивной метки с последующим контролем ее появления в соответствующей области. У различных насекомых время кругооборота равно 20-30 мин, у крабов - 37-65 с, у кролика - 7 с, у собаки - 16 с. У человека минимальное время полного кругооборота составляет 20-23 с. При этом на прохождение малого круга кровообращения приходится около 1/5 времени, а на прохождение большого - нередко 4/5.