Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
for_physic_new.doc
Скачиваний:
46
Добавлен:
23.11.2019
Размер:
796.67 Кб
Скачать

5.5. Дисперсия и поглощение света

Классическая модель диспергирующей среды. При распро­странении в веществе электромагнитной волны заряженные частицы среды приходят в вынужденное колебательное движение. Амплитуда этих колебаний и их сдвиг по фазе по отношению к колебаниям на­пряженности поля волны зависят от соотношения частоты волны ω и частоты собственных колебаний частиц ω0 (см. разд. 4.3). Резуль­тирующей: волновое возмущение можно рассматривать как результат интерференции исходной волны и волн, излученных частицами среды (такой подход называют молекулярной оптикой). Однако в случае од­нородной среды можно получить частотные характеристики волны полуфеноменологически, учитывая возникающую при смещении частиц поляризованность, вводя зависящие от частоты диэлектрическую вос­приимчивость и проницаемость и вычисляя показатель преломления. Затухание волны, т.е. преобразование энергии колебаний в тепловую энергию, учитывается введением полуэмпирических коэффициентов затухания осцилляторов; диэлектрическая проницаемость и показа­тель преломления становятся при этом комплексными числами.

Рассмотрим сначала среду из одинаковых осцилляторов. Уравнение движения заряженной частицы имеет вид

где Е – поле, действующее на частицу (в оптическом диапазоне игра­ют роль только электроны). В неплотных газах можно не учитывать отличие локального поля от среднего, т.е. считать, что на электроны действует непосредственно поле волны . Решение уравнения движения ищем в виде , и после подстановки получим

(в комплексной записи автоматически учитывается сдвиг фаз). Сме­щение частиц приводит к появлению у молекул дипольных моментов

Frame1

т.е. к появлению поляризованноети (N – концентрация). Из соотношения находим комплексную диэлектрическую проницаемость

(18)

Показатель преломления тоже будет мнимый: , причем че­рез действительную часть выражается фазовая скорость волны, а через η — коэффициент затухания:

(19)

Чтобы найти и надо в равенстве приравнять действительные и мнимые части. Вдали от собственной частоты (при ) получим

Зависимости и качественно изображены на рис. 90 ( – значение при , которое называют статическим). Там, где поглощение невелико, показатель преломления возрастает с частотой (нормальная дисперсия). В узкой области сильного поглощения наблю­дается аномальная дисперсия.

Аналогичная ситуация возникает возле каждой собственной ча­стоты ( и па рис. 90). Например, в инфракрасной области спектра наблюдаются полосы поглощения и аномальной дисперсии, связанные с колебаниями ионов. Полосы поглощения в ультрафиолето­вой (иногда – в видимой) областях спектра объясняются колебаниями электронов на внешних оболочках атомов (оптических электронов). В рентгеновской области спектра частота волны ω велика по сравнению со всеми собственными частотами и зависимость определяется колебаниями электронов, которые можно считать свободными:

(20)

Коэффициент преломления рентгеновских лучей мало отличается от единицы. Такая же формула верна для волны, распространяющейся в разреженной плазме, содержащей свободные электроны.

Фазовая скорость волны в плазме (а также справа от полосы поглощения в диэлектрике) оказывается больше скорости света в вакууме (п < 1). Однако здесь не содержится противоречия с теорией относительности, так как групповая скорость волны u = / dk (см. разд. 4.4) будет при этом меньше с. Убедимся в этом для волны в плазме. Используя соотношение и уравнение (20), получим:

Значит, в этом случае .

У полярных молекул (например, воды) широкая полоса аномаль­ной дисперсии находится в области сантиметровых радиоволн, где ам­плитуда вращательных колебаний диполей, стремящихся повернуться вслед за напряженностью поля, сильно зависит от частоты. Именно в этой области происходит уменьшение от большого статиче­ского значения (для воды ) к высокочастотному значению (для воды ).

Формула (18) верна только при п, близких к единице, когда можно пренебречь отличием поля, действующего на молекулу, от среднего поля в веществе. Обобщением на случай плотных газов и жидкостей является формула Лорентц — Лоренца:

которая следует из формулы Клаузиуса — Масотти (раздел 3.6). При изменении плотности вещества величина

которая называется удельной рефракцией, должна оставаться постоян­ной.

Рассеяние света. Ослабление волны. Интенсивность волны в среде уменьшается не только из-за поглощения света, но и вследствие его рассеяния. Рассеяние объясняется излучением света атомными ос­цилляторами, которое происходит по всем направлениям (см. разд. 4.5). Однако в идеально однородной среде свет, рассеянный молекулами, находящимися на расстоянии λ/2 друг от друга, испытывал бы полное интерференционное гашение, и ослабление за счет рассеяния в этом случае отсутствовало бы. Рассеяние наблюдается па малых инородных частицах (тиндалевское рассеяние в мутных средах) и на неоднородностях, возникающих вследствие флуктуации плотности (рэлеевское рассеяние).

Интенсивность света, рассеянного на неоднородностях, размеры которых малы по сравнению с длиной волны, пропорциональна λ-4 (закон Рэлея, см. также разд. 4.5). Этим объясняется голубой цвет неба (рассеянный солнечный свет) и желто-красный цвет солнца (проходя­щий свет). Степень поляризации рассеянного естественного света за­висит от угла рассеяния; свет, рассеянный под углом π/2, оказывается полностью поляризованным. Качественное объяснение состоит в том, что в этом направлении излучают только осцилляторы, направление колебаний которых перпендикулярно направлению рассеяния. Рассея­ние на неоднородностях, больших по сравнению с длиной волны, слабо зависит от частоты; этим объясняется белый цвет облаков.

Рэлеевское рассеяние на флуктуациях плотности или концентра­ции зависит от температуры. При приближении к критической точке средние размеры флуктуации резко возрастают и наблюдается белое помутнение жидкости, называемое критической опалесценцией.

Ослабление пучка света при не очень большой интенсивности про­исходит по экспоненциальному закону (закон Бугера):

где коэффициент ослабления: α равен сумме коэффициента поглоще­ния, который выражается через мнимую часть показателя преломле­ния (см. формулу (19)), и коэффициента рассеяния, который описывает ослабление волны из-за рассеяния.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]