Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
355951_8ABAA_shpory_po_fizike.docx
Скачиваний:
6
Добавлен:
05.08.2019
Размер:
693.32 Кб
Скачать

12.Кінетична енергія а.Т.Т.

13.Гармонічні коливання. Маятники.

Пружний маятник

П ружинний ма

Физический маятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

14.Перетворення енергії при гармонічних коливаннях.

Перетворення енергії при гармонічних коливаннях. Явище резонансу під час вимушених механічних коливань

Розглянемо перетворення енергії під час гармонічних коливань на прикладі пружинного маятника. Уважатимемо систему, що виконує вільні гармонічні коливання під дією пружної сили замкненою. У процесі коливання згідно із законом збереження енергії відбувається перетворення кінетичної енергії в потенціальну і, навпаки, але повна механічна енергія замкненої системи має залишатися незмінною.

З цією метою з'ясуємо, як змінюється в часі кінетична і потенціальна енергії. У формулу кінетичної енергії підставимо значення швидкості гармонічного коливання:

.               (5.1.5)

Якщо в певну мить зміщення системи від положення рівноваги дорівнює х, то її потенціальна енергія дорівнює роботі пружної сили. Оскільки під час зміни зміщення від 0 до х величина пружної сили змінюється від F1 = 0 до F2 = kx, то роботу цієї сили розраховують за формулою . Отже, . Підставляючи в цю формулу значення зміщення для гармонічного коливання, одержимо вираз

.                       (5.1.6)

Повна енергія коливальної системи дорівнює сумі кінетичної і потенціальної енергій у заданий момент часу. Додаючи рівняння (5.1.5) і (5.1.6) та враховуючи, що mw2 = k, отримаємо вираз для повної енергії коливальної системи:

.

Таким чином, повна енергія системи, що виконує гармонічні коливання, пропорційна квадрату амплітуди коливань і не залежить від часу. Зі збільшенням кінетичної енергії системи зменшується її потенціальна енергія і, навпаки, але сума кінетичної і потенціальної енергій в довільний момент часу залишається сталою.

У реальних коливальних системах за рахунок зміни енергії коливального руху виконується робота проти сил тертя й опору. Тому з часом амплітуда вільних коливань зменшується (рис.5.1.5). Коли ж запас енергії вичерпується, коливання припиняються. Коливання, амплітуда яких з часом зменшується, називають загасальними. Інколи цей процес посилюють за допомогою спеціальних пристроїв. Наприклад, у транспортних засобах використовують різні амортизатори, які гасять коливання кузова, зумовлені нерівностями дороги.

Для того, щоб коливання в системі не загасали, необхідно компенсувати втрати енергії, спричинені дією сили тертя і опору. Енергію в системі треба поповнювати періодично. Це досягається періодичною дією на систему зовнішньої сили. Наприклад, коливання тягарця, підвішеного на пружині, можна підтримувати як завгодно довго, якщо підштовхувати тягарець через рівні проміжки часу.

Коливання системи, які виникають під дією зовнішньої періодично змінної сили, називаються вимушеними.

Зі зміною частоти n зовнішньої сили змінюються амплітуди вимушених коливань. Якщо ця частота наближається до частоти вільних коливань системи n0, то амплітуда вимушених коливань збільшується, досягаючи максимуму, якщо n = n0. Зі збільшенням частоти (n > n0) амплітуда вимушених коливань зменшується. Явище різкого зростання амплітуди вимушених коливань у разі наближення частоти дії зовнішньої періодичної сили до частоти вільних коливань системи називають резонансом. Графік залежності амплітуди коливань від частоти під час резонансу зображено на рис.5.1.6. Резонансна крива тим гостріша, чим менші втрати енергії в системі.

Явище резонансу може бути корисним, оскільки воно дає змогу навіть за допомогою малої сили суттєво збільшити амплітуду, наприклад, укладання бетону за допомогою вібраторів.

Резонанс може бути шкідливим і небезпечним. З метою запобігання цьому слід заздалегідь обчислювати частоти коливань різних машин, засобів транспорту, фундаментів тощо, щоб у звичайних умовах їх експлуатації не міг настати резонанс.

У повсякденному житті можна спостерігати, як в кімнаті бряжчать шибки під час проходження по вулиці важкого вантажного автомобіля. Це означає, що власні частоти коливань шибок дорівнюють частоті коливань деталей автомобіля.

Перетворення енергії при гармонічних коливаннях. Явище резонансу під час вимушених механічних коливань

Розглянемо перетворення енергії під час гармонічних коливань на прикладі пружинного маятника. Уважатимемо систему, що виконує вільні гармонічні коливання під дією пружної сили замкненою. У процесі коливання згідно із законом збереження енергії відбувається перетворення кінетичної енергії в потенціальну і, навпаки, але повна механічна енергія замкненої системи має залишатися незмінною.

З цією метою з'ясуємо, як змінюється в часі кінетична і потенціальна енергії. У формулу кінетичної енергії підставимо значення швидкості гармонічного коливання:

.               (5.1.5)

Якщо в певну мить зміщення системи від положення рівноваги дорівнює х, то її потенціальна енергія дорівнює роботі пружної сили. Оскільки під час зміни зміщення від 0 до х величина пружної сили змінюється від F1 = 0 до F2 = kx, то роботу цієї сили розраховують за формулою . Отже, . Підставляючи в цю формулу значення зміщення для гармонічного коливання, одержимо вираз

.                       (5.1.6)

Повна енергія коливальної системи дорівнює сумі кінетичної і потенціальної енергій у заданий момент часу. Додаючи рівняння (5.1.5) і (5.1.6) та враховуючи, що mw2 = k, отримаємо вираз для повної енергії коливальної системи:

.

Таким чином, повна енергія системи, що виконує гармонічні коливання, пропорційна квадрату амплітуди коливань і не залежить від часу. Зі збільшенням кінетичної енергії системи зменшується її потенціальна енергія і, навпаки, але сума кінетичної і потенціальної енергій в довільний момент часу залишається сталою.

У реальних коливальних системах за рахунок зміни енергії коливального руху виконується робота проти сил тертя й опору. Тому з часом амплітуда вільних коливань зменшується (рис.5.1.5). Коли ж запас енергії вичерпується, коливання припиняються. Коливання, амплітуда яких з часом зменшується, називають загасальними. Інколи цей процес посилюють за допомогою спеціальних пристроїв. Наприклад, у транспортних засобах використовують різні амортизатори, які гасять коливання кузова, зумовлені нерівностями дороги.

Для того, щоб коливання в системі не загасали, необхідно компенсувати втрати енергії, спричинені дією сили тертя і опору. Енергію в системі треба поповнювати періодично. Це досягається періодичною дією на систему зовнішньої сили. Наприклад, коливання тягарця, підвішеного на пружині, можна підтримувати як завгодно довго, якщо підштовхувати тягарець через рівні проміжки часу.

Коливання системи, які виникають під дією зовнішньої періодично змінної сили, називаються вимушеними.

Зі зміною частоти n зовнішньої сили змінюються амплітуди вимушених коливань. Якщо ця частота наближається до частоти вільних коливань системи n0, то амплітуда вимушених коливань збільшується, досягаючи максимуму, якщо n = n0. Зі збільшенням частоти (n > n0) амплітуда вимушених коливань зменшується. Явище різкого зростання амплітуди вимушених коливань у разі наближення частоти дії зовнішньої періодичної сили до частоти вільних коливань системи називають резонансом. Графік залежності амплітуди коливань від частоти під час резонансу зображено на рис.5.1.6. Резонансна крива тим гостріша, чим менші втрати енергії в системі.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]