Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матем шпоры.ок вариант.docx
Скачиваний:
6
Добавлен:
15.04.2019
Размер:
734.39 Кб
Скачать

11.4 Применение дифференциала в приближенных вычислениях.

Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ'(х)•∆х+α•∆х, где α→0 при ∆х→0, или ∆у=dy+α•∆х. Отбрасывая бесконечно малую α•∆х более высокого порядка, чем ∆х, получаем приближенное равенство

у≈dy,                                              (24.3)

причем это равенство тем точнее, чем меньше ∆х.

Это равенство позволяет с большой точностью вычислить приближенно приращение любой дифференцируемой функции.

Дифференциал обычно находится значительно проще, чем приращение функции, поэтому формула (24.3) широко применяется в вычислительной практике.

12.4 Дифференциалы высших порядков. Дифференциал высшего порядка функции одной переменной

Для функции, зависящей от одной переменной   второй и третий дифференциалы выглядят так:

Отсюда можно вывести общий вид дифференциала n-го порядка от функции  :

При вычислении дифференциалов высших порядков очень важно, что  есть произвольное и не зависящее от  , которое при дифференцировании по   следует рассматривать как постоянный множитель.

Дифференциал высшего порядка функции нескольких переменных

Если функция   имеет непрерывные частные производные второго порядка, то дифференциал второго порядка определяется так: .

1.4 Производная. Геометрический и механический смысл.

1. cp.=S/t, =lim(S/t), где t0

2. pcp.=m/l, pT=lim(m/l), где l0

y=f(x+x)-f(x), y=f(x)

lim(y/x)=lim((f(x+x)-f(x))/x)

x0 x0

Смысл производной - это скорость изменения ф-ции при изменении аргумента.

y=f(x+x)-f(x), y=f(x). производной в точке а называется предел отношения приращения ф-ции к приращению аргумента:

lim(y/x)=lim((f(x+x)-f(x))/x)=dy/dx

x0 x0

Вычисление производной: lim(y/x)=y` x0

1) если y=x, y=x, y`=x=lim(y/x)=1.

2) если y=x2, y=(x+x)2-x2=x2+2xx+x2-x2=x(2x-x),

(x2)`=lim((x(2x+x))/x)=lim(2x+x)=2x

x0 x0

Геометрический смысл производной.

K N=y, MK=x

MNK/tg2=y/x

вычислим предел левой и правой части:

limtg=lim(y/x) x0

tg0=y`

0

При x0 секущая MNзанять положение касательной в точке M(tg0=y`, 0)

Геометрический смысл производной заключается в том, что есть tg угла наклона касательной, проведенной в точке x0.

Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан:  координата  x  движущейся точки – известная функция  x ( t ) времени  t. В течение интервала времени от  t0  до  t0 +   точка перемещается на расстояние:  x ( t0 + )  x ( t0 ) = , а её средняя скорость равна:  va =  . При  0  значение средней скорости стремится к определённой величине, которая называется мгновенной скоростью  v ( t0 )  материальной точки в момент времени  t0 . Но по определению производной мы имеем:

отсюда,  v ( t0 ) = x’ ( t0 ) , т.e. скорость – это производная координаты по времени. В этом и состоит  механический смысл производной. Аналогично, ускорение – это производная скорости по времениa = v’ ( t ).