Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 6. Электродинамика.docx
Скачиваний:
25
Добавлен:
12.11.2018
Размер:
3.34 Mб
Скачать

Глава 24

ВОЛНОВОДЫ

§ 1. Передающая линия

§ 2. Прямоугольный волновод

§ 3. Граничная частота

§ 4. Скорость волн в волноводе

§ 5. Как наблюдать волны в волноводе

§ 6. Сочленение волноводов

§ 7. Типы волн в волноводе

§ 8. Другой способ рассмотрения волн в волноводе

§ 1. Передающая линия

В предыдущей главе мы выяснили, что слу­чится с сосредоточенными элементами цепи, если на них подать очень высокую частоту. Мы пришли к выводу, что резонансный контур мож­но заменить полостью, внутри которой поля вступают друг с другом в резонанс. Но есть и другой интересный технический вопрос: как связать между собой два предмета, чтобы можно было передать электрическую энергию от одного к другому? В цепях низкой частоты эта связь осуществляется по проводам, но этот способ на высоких частотах не очень хорош, потому что энергия рассеивается во все стороны и трудно контролировать, куда она потечет. От проводов во все стороны разбегаются поля; к тому же то­ки и напряжения высокой частоты не очень хорошо «проводятся» проводами. В этой главе мы и хотим разобраться в том, как можно со­единять между собой предметы на большой частоте. Таков по крайней мере один подход к теме нашей лекции.

Но можно к ней подойти и по-другому, мож­но сказать, что мы пока обсуждали поведение волн в пустом пространстве, а теперь пришло время посмотреть, что случится, если колеблю­щиеся поля ограничить в одном или двух изме­рениях. Мы обнаружим новое интересное яв­ление: если поля ограничить в двух измерениях и дать им свободу в третьем, они распространя­ются в виде волн. «Волны в волноводе» и будут предметом нашей лекции.

Начнем с разработки общей теории линии передачи. Обычная линия электропередачи, ко­торая тянется от мачты к мачте по полям и ле­сам, тратит часть своей мощности на излучение, но частота здесь так мала (50—60 гц), что эти потери почти не­заметны.

Фиг. 24.1. Коаксиальная передающая линия.

От излучения можно избавиться, поместив провод в металлическую трубу, но это непрактично, потому что при та­ких токах и напряжениях в сети без больших, тяжелых и доро­гих труб не обойтись. Так что в ходу обычно «открытые линии».

На частотах чуть повыше (порядка нескольких килогерц) излучение уже вполне заметно. Но его можно уменьшить, поль­зуясь «двухжильной» линией передачи, как это делается при те­лефонной связи на малые расстояния. Однако при дальнейшем повышении частоты излучение вскоре становится нетерпимо сильным либо за счет потерь энергии, либо из-за того, что энер­гия перетекает в другие контуры, где она совсем не нужна. На частоте от нескольких килогерц до нескольких тысяч мегагерц электромагнитные сигналы и электромагнитная энергия обычно передаются по коаксиальным линиям, т. е. по проводу, помещен­ному внутрь цилиндрического «внешнего проводника», или «за­щиты». Хотя дальнейшие рассуждения годятся для линии пере­дачи из двух параллельных проводников любого сечения, речь будет идти о коаксиальном кабеле.

Возьмем простейшую коаксиальную линию, состоящую из центрального проводника (пусть это будет тонкостенный полый цилиндр) и внешнего проводника — тоже тонкостенного цилин­дра, ось которого совпадает с осью внутреннего проводника (фиг. 24.1). Для начала представим себе, как примерно ведет себя эта линия при относительно низких частотах. Мы уже кое-что говорили о поведении при низких частотах, когда утверж­дали, что у двух таких проводников на каждую единицу длины приходится сколько-то там индуктивности и сколько-то емкости. И действительно, поведение любой передающей линии при низ­ких частотах можно описать, задав ее индуктивность на едини­цу длины L0 и ее емкость на единицу длины С0. Тогда линию можно было бы рассматривать как предельный случай фильтра L—С (см. гл. 22, § 7). Можно создать такой фильтр, который будет имитировать линию, если последовательно соединить меж­ду собой маленькие элементы индуктивности L0Ax и зашунтировать их маленькими емкостями С0x; (где x; — элемент длины линии). Применяя к бесконечному фильтру наши прежние ре­зультаты, мы бы увидали, что вдоль линии должны распростра­няться электрические сигналы. Но поступим иначе и вместо этого изучим свойства линии, опираясь на дифференциальные уравнения.

Фие. 24.2. Токи и напряже­ния в передающей линии.

Предположим, мы наблюдаем за происходящим в двух сосед­них точках передающей линии, скажем, на расстояниях х и х+х от начала линии. Обозначим напряжение между провод­никами через V(x), а ток в верхнем проводнике I(х} (фиг. 24.2). Если ток в линии меняется, то индуктивность вызовет падение напряжения вдоль небольшого участка линии от х до x+x

Или, беря предел при x0, получаем

(24.1)

Изменение тока приводит к перепаду напряжения.

Теперь еще раз взгляните на рисунок. Если напряжение в х меняется, то должны появляться заряды, которые на этом участке передаются емкости. Если взять небольшой участок ли­нии от х до x+x, то заряд на нем равен q = C0xV. Скорость изменения этого заряда равна C0xdV/dt, но заряд меняется только тогда, когда ток I(х), входящий в элемент, отличается от выходящего тока I(х+х), Обозначая разность через I,

Если перейти к пределу при x0, получается

(24.2)

Так что сохранение заряда предполагает, что градиент тока про­порционален скорости изменения напряжения во времени. Уравнения (24.1) и (24.2) — это основные уравнения линии передачи. При желании их можно видоизменить так, чтобы они учитывали сопротивление проводников или утечку зарядов че­рез изоляцию между проводниками, но пока нам достаточно са­мого простого примера.

Оба уравнения передающей линии можно объединить, про­дифференцировав первое по t, а второе по x; и исключив V или I. Получится либо

(24.3)

либо

(24.4)

Мы снова узнаем волновое уравнение по х. В однородной передающей линии напряжение (и ток) распространяется вдоль линии как волна. Напряжение вдоль линии будет следовать за­кону V(x, t)=f(x-vt) или V(x, t)=g(x+vt) или их сумме. А что такое здесь v? Мы знаем, что коэффициент при d2/dt2 — это просто 1/v2. так что

(24.5)

Покажите самостоятельно, что напряжение для каждой волны в линии пропорционально току этой волны и что коэффи­циент пропорциональности — это просто характеристический импеданс z0. Обозначив через V+ и I+ напряжение и ток для вол­ны, бегущей в направлении +x, вы должны будете получить

(24.6)

Равным образом, для волны, бегущей в направлении -х, полу­чится

Характеристический импеданс, как мы уже видели из наших уравнений для фильтра, дается выражением

(24.7)

и поэтому есть чистое сопротивление.

Чтобы найти скорость распространения v и характеристиче­ский импеданс z0 передающей линии, нужно знать индуктив­ность и емкость единицы длины линии. Для коаксиального ка­беля их легко подсчитать. Поглядим, как это делается. При рас­чете индуктивности мы будем следовать идеям, изложенным в гл. 17, § 8, и положим 1/2 LI2 равным магнитной энергии, в свою очередь получаемой интегрированием 0с2B2/2 по объему. Пусть по внутреннему проводнику течет ток I; тогда мы знаем, что B=I/20с2r, где r — расстояние от оси. Беря в качестве эле­мента объема цилиндрический слой толщины dr и длины l,

получаем для магнитной энергии

где а и b — радиусы внутреннего и внешнего проводников, Интегрируя, получаем

(24.8)

Приравниваем эту энергию к 1I2LI2 и находим

(24.9)

Как и следовало ожидать, L пропорционально длине l линии, поэтому L0 (индуктивность на единицу длины) равна

(24.10)

Мы уже рассчитывали заряд на цилиндрическом конден­саторе [гл. 12, § 2 (вып. 5)]. Деля теперь этот заряд на раз­ность потенциалов, получаем

Емкость же на единицу длины С0это С/l. Сопоставляя этот результат с (24.10), мы убеждаемся, что произведение L0C0 равно просто 1/с2, т. е. v=1L0C0 равно с. Волна бежит по линии со скоростью света. Нужно подчеркнуть, что этот результат зави­сит от сделанных предположений: а) что в промежутке между проводниками нет ни диэлектриков, ни магнитных материалов; б) что все токи текут только по поверхности проводников (как это бывает в идеальных проводниках). Позже мы увидим, что на высоких частотах все токи распределяются на поверхности хоро­ших проводников, словно они идеальные проводники, так что это предположение правильно.

Любопытно, что в этих двух предположениях произведение L0C0 равно 12 для любой параллельной пары проводников, да­же в том случае, если, скажем, внутренний шестигранный про­водник тянется как-то вдоль эллиптического внешнего. Пока сечение постоянно и между проводниками нет ничего, волны рас­пространяются со скоростью света.

Подобных общих утверждений по поводу характеристиче­ского импеданса сделать нельзя. Для коаксиальной линии он равен

(24.11)

Множитель 1/e0c имеет размерность сопротивления и равен 120 ом. Геометрический фактор In(b/a) только логарифмически зависит от размеров, так что коаксиальная линия (и большинст­во других линий), как правило, обладает характеристическим импедансом порядка 50 ом или что-то около этого, до нескольких сот ом.