Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 6. Электродинамика.docx
Скачиваний:
25
Добавлен:
12.11.2018
Размер:
3.34 Mб
Скачать

§ 6. Взаимная индукция

Теперь нам нужно рассмотреть случай, когда проволочные катушки неподвижны, а меняются магнитные поля. Описывая образование магнитного поля токами, мы рассматривали только случай постоянных токов. Но если токи меняются медленно, магнитное поле в каждый момент будет примерно такое же, как магнитное поле постоянного тока. Мы будем считать в этом параграфе, что токи всегда меняются достаточно медленно, и можно сказать, что это утверждение справедливо.

На фиг. 17.8 показано устройство из двух катушек, с по­мощью которого можно продемонстрировать основные эффекты, ответственные за работу трансформатора. Катушка 1 состоит из проводящей проволоки, свитой в виде длинного соленоида. Вокруг этой катушки и изолированно от нее навита катушка 2, состоящая из нескольких витков проволоки. Если теперь по катушке 1 пропустить ток, то, как мы знаем, внутри нее по­явится магнитное поле. Это магнитное поле проходит также сквозь катушку 2. Когда ток в катушке 1 меняется, магнитный поток тоже будет меняться, и в катушке 2 появится индуциро­ванная э.д.с. Эту индуцированную э.д.с. мы сейчас и вычислим.

В гл. 13, § 5 (вып. 5) мы видели, что магнитное поле внутри длинного соленоида однородно и равно

(17.23)

где N1 — число витков в катушке 1, I1 — ток в ней, а l — её длина. Пусть поперечное сечение катушки 1 равно S, тогда поток поля В равен его величине, умноженной на S. Если в ка­тушке 2 имеется N2 витков, то поток проходит по катушке N2 раз. Поэтому э. д. с. в катушке 2 дается выражением

.(17.24)

Единственная меняющаяся со временем величина в (17.23) есть I1. Поэтому э. д. с. дается выражением

(17.25)

Мы видим, что э. д. с. в катушке 2 пропорциональна скорости изменения тока в катушке 1. Константа пропорциональности — по существу геометрический фактор двух катушек, называется коэффициентом взаимной индукции и обозначается обычно m21. Тогда (17.25) записывается уже в виде

(17.26)

Предположим теперь, что нам нужно было бы пропустить ток через катушку 2 и нас интересует, чему равна э. д. с. в ка­тушке 1. Мы вычислили бы магнитное поле, которое повсюду пропорционально току I2. Поток сквозь катушку I зависел бы от геометрии, но был бы пропорционален току I2. Поэтому

Фиг. 17.8. Ток в катушке 1 соз­дает магнитное поле, проходящее через катушку 2.

Фиг. 17.9. Любые две катушки обладают взаимной индукцией m, пропорциональной инте­гралу от ds1ds2• (1/r12).

э. д. с. в катушке 1 снова была бы пропорциональна dI2/dt. Мы можем записать

(17.27)

Вычисление m 12 было бы труднее, чем те вычисления, кото­рые мы проделали для m 21. Мы не будем сейчас им заниматься, потому что дальше в этой главе мы покажем, что m 12 обя­зательно равно m 21.

Поскольку поле любой катушки пропорционально текущему в ней току, такой же результат получился бы и для любых двух катушек из проволоки. Выражения (17.26) и (17.27) при­обрели бы одинаковую форму, и только постоянные m 12 и m 21 были бы другие. Их значения будут зависеть от формы кату­шек и их относительного положения.

Предположим, нам нужно найти коэффициент взаимной ин­дукции между двумя произвольными катушками, например показанными на фиг. 17.9. Мы знаем, что общее выражение для э. д. с. в катушке 1 можно записать так:

где В — магнитное поле, а интеграл берется по поверхности, ограниченной контуром 1. В гл. 14, § 1 (вып. 5) мы видели, что поверхностный интеграл от В можно свести к контурному ин­тегралу от векторного потенциала. В нашем случае

как контурный интеграл по контуру цепи 2:

(17.29)

где I2 — ток в цепи 2, а r12 — расстояние от элемента цепи ds2 к точке на контуре 1, в которой мы вычисляем векторный потенциал (см. фиг. 17.9). Комбинируя (17.28) и (17.29), можно выразить э. д. с. в цепи 1 как двойной контурный интеграл:

В этом выражении все интегралы берутся по неподвижным кон­турам. Единственной переменной величиной является ток I2, который не зависит от переменных интегрирования. Поэтому его можно вынести за знак интеграла. Тогда э. д. с. можно записать как

где коэффициент m 12 равен

(17.30)

Из этого интеграла очевидно, что m 12 зависит только от гео­метрии цепей; он зависит от некоторого среднего расстояния между двумя цепями, причем в среднее с наибольшим весом входят параллельные отрезки проводников двух катушек. Нашу формулу можно использовать для вычисления коэффи­циента взаимной индукции любых двух цепей произвольной формы. Кроме того, она показывает, что интеграл для m 12 тождествен с интегралом для m 21. Таким образом, мы показали, что оба коэффициента одинаковы. Для системы только с двумя катушками коэффициенты m 12 и m 21 часто обозначают символом m без значков и называют просто коэффициентом взаимной индукции:

m 12= m 21 = m.