Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan.docx
Скачиваний:
47
Добавлен:
29.03.2016
Размер:
707.19 Кб
Скачать

55. Интервальные методы.

Интервальные оценки.

Если статистическая оценка параметров законы вероятность распределения случайной величины характеризуется 2 числами – концами интервала, то такая оценка называется интервальной

Интервальный метод оценивания параметров распределения случайных величин заключается в определении интервала (а не единичного значения), в котором с заданной степенью достоверности будет заключено значение оцениваемого параметра. Интервальная оценка характеризуется двумя числами – концами интервала, внутри которого предположительно находится истинное значение параметра. Иначе говоря, вместо отдельной точки для оцениваемого параметра можно установить интервал значений, одна из точек которого является своего рода "лучшей" оценкой. Интервальные оценки являются более полными и надежными по сравнению с точечными, они применяются как для больших, так и для малых выборок. Совокупность методов определения промежутка, в котором лежит значение параметра Т, получила название методов интервального оценивания. К их числу принадлежит метод Неймана.

Постановка задачи интервальной оценки параметров заключается в следующем [3, 11].

Имеется: выборка наблюдений (x1, x2, …, xn) за случайной величиной Х. Объем выборки n фиксирован .

Необходимо с доверительной вероятностью g=1–a определить интервал

t0 – t1 (t0< t1),

который накрывает истинное значение неизвестного скалярного параметра Т (здесь, как и ранее, величина Т является постоянной, поэтому некорректно говорить, что значение Т попадает в заданный интервал).

Ограничения: выборка представительная, ее объем достаточен для оценки границ интервала.

Эта задача решается путем построения доверительного утверждения, которое состоит в том, что интервал от t0 до t1 накрывает истинное значение параметра Т с доверительной вероятнос­тью не менее g. Величины t0 и t1 называются нижней и верхней доверительными границами (НДГ и ВДГ соответственно). Доверительные границы интервала выбирают так, чтобы выполнялось условие

P(t0 <= q < t1) = g.

В инженерных задачах доверительную вероятность g назначают в пределах от 0,95 до 0,99. В доверительном утверждении считается, что статистики t0 и t1 являются случайными величинами и изменяются от выборки к выборке. Это означает, что доверительные границы определяются неоднозначно, существует бесконечное количество вариантов их установления.

На практике применяют два варианта задания доверительных границ:

устанавливают симмет­рично относительно оценки параметра, т.е.

t0 = q – Еg, t1 = q + Еg,

где Еg выбирают так, чтобы вы­полнялось доверительное утверждение. Следовательно, величина абсолютной погрешности оценивания Еg равна половине доверительного интервала;

устанавливают из условия равенства вероятностей выхода за верхнюю и нижнюю границу

Р(Т > q+Е1,g)= Р(Т< q–Е2,g) = a/2.

В общем случае величина Е1,g не равна Е2,g. Для симметричных распределений случайного параметра q в целях минимизации величины интервала значения Е1,g и Е2,g выбирают одинаковыми, следовательно, в таких случаях оба варианта эквивалентны.

2.Предел функции двух переменных и ее свойства. Для функции двух (и большего числа) переменных вводится понятие предела функции и непрерывности, аналогично случаю функции одной переменной. Введем понятие окрестности точки. Множество всех точек М(х;у) плоскости, координаты которых удовлетворяют неравенствуназывается d-окрестностью точки М000). Другими словами, d-окрестность точки Мо — это все внутренние точки круга с центром Мо и радиусом 8 (см. рис. 206).

Пусть функция z = ƒ(х; у) определена в некоторой окрестности точки М000), кроме, быть может, самой этой точки. Число А называется пределом функции z = ƒ (х; у) при х → х0 и у → у0 (или, что то же самое, при М(х; у) → М00; у0)), если для любого є > 0 существует d > 0 такое, что для всех х ≠ х0 и у ≠ у0 и удовлетворяющих неравенству

 выполняется неравенство | ƒ (х; у) — А| < є. Записывают:

Из определения следует, что если предел существует, то он не зависит от пути, по которому М стремится к Мо (число таких направлений бесконечно; для функции одной переменной х → х0 по двум направлениям: справа и слева!)

Геометрический смысл предела функции двух переменных состоит в следующем. Каково бы ни было число є>0, найдется d-окрестность точки Mооо), что во всех ее точках М(х;у), отличных от Мо, аппликаты соответствующих точек поверхности z=ƒ(х;у) отличаются от числа А по модулю меньше, чем на є. Свойства пределов функции

1°   Предел суммы/разности двух функций равен сумме/разности их пределов:

2°   Предел произведения двух функций равен произведению их пределов:

3°   Предел частного двух функций равен частному их пределов, при условии, что предел знаменателя не равен нулю:

4°   Константу можно выносить за знак предела:

5°   Предел степени с натуральным показателем равен степени предела:

5.Частная производная и ее геометрический смысл….. Предел отношения частного приращения функции при , если он существует и конечен называется частной производной по х

Геометрический смысл частной производной также становится ясен, если рассмотреть ограничение функции, полученное при фиксации значений всех переменных, кроме. Для наглядности ограничимся случаем функции двух переменныхи. В этом случае мы можем изобразить график функциина чертеже в виде некоторой поверхности.

Отметим на плоскости точку , в которой вычисляется частная производная , и рассмотрим сечение графика вертикальной плоскостью ; она проходит на плоскости через прямую , заданную тем же уравнением . Тогда эта плоскость высекает в поверхности графика линию, служащую графиком функции . Функция  -- это функция одной переменной , и её производная в точке равна тангенсу угла наклона касательной, проведённой к графику в точке . С другой стороны, . Значит, частная производная имеет геометрический смысл как тангенс угла наклона касательной к сечению графика вертикальной плоскостью .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]