Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
генетика экзамен.docx
Скачиваний:
981
Добавлен:
19.03.2016
Размер:
198.9 Кб
Скачать

6. Клеточный цикл. Митоз как механизм бесполого размножения эукариот.

Функция воспроизведения и передачи генетической информации обеспечивается в ходе клеточного цикла. Клеточный цикл - совокупность явлений между двумя последовательными делениями клетки или между ее образованием и гибелью. КЦ € митотическое деление и интерфазу. Интерфаза обычно занимает не менее 90% всего времени клеточного цикла и €: пресинтетическип или постмитотический (G1), синтетический (S) и постсинтетический или премитотический (G2).

G1 →накопление белка, РНК, активно Fют гены.

S→ синтезируется ДНК и происходит ауторепродукция (самоудвоение) хромосом, что приводит к возникновению второй хроматиды.

G2→продолжается синтез ДНК и белков, накапливается энергия.

Вслед за интерфазой начинается деление клетки — митоз: профазу, метафазу, анафазу, телофазу. В профазе хромосомы представляют собой клубок длинных тонких хроматиновых нитей. К концу этой фазы длина их уменьшается за счет спирализации примерно в 25 раз,разрушается ядрышко. Нити веретена прикрепляются к центриолям, которые в этот период уже разделились и находятся на противоположных полюсах клетки. Завершается профаза разрушением ядерной оболочки клетки.

В метафазе утолщенные спирализованные хромосомы перемещаются в экваториальную плоскость клетки (метафазная пластинка) Началом анафазы считают момент разделения удвоенных хромосом на хроматиды, которые затем расходятся к противоположным полюсам клетки.

Во время телофазы сестринские хроматиды достигают противоположных полюсов и деспирализуются. Так формируются два дочерних ядра. Наряду с делением материнского ядра происходит деление цитоплазмы, образование оболочек клеток.

Основное биологическое значение митоза состоит в точном распределении хромосом между двумя дочерними клетками; тем самым сохраняются преемственность хромосомного набора в ряду клеточных поколений и полноценность генетической информации каждой клетки, что необходимо для осуществления общих и специфических функций живого организма.

7. Особенности размножения и передачи генетической информации у бактерий и вирусов. Сексдукция, трансформация, трансдукция.

Бактерии размножаются бесполым способом — делением «материнской клетки» надвое. Перед делением происходит репликация ДНК.

Редко у бактерий м.б половой процесс, при котором происходит рекомбинация генетического материала. У бактерий никогда не образуются гаметы, не происходит слияние содержимого клеток, а имеет место передача ДНК от клетки-донора к клетке-реципиенту. Различают три способа передачи ДНК: конъюгация, трансформация, трансдукция.

Сексдукция

Половой процесс у бактерий, основу которого составляет перенос генетического материала F-фактором <F factor> при конъюгации; при С. F-плазмида может переносить до 50% бактериальной хромосомы; частный случай переноса генов во время конъюгации от одной бактериальной клетки — донорской («мужской») к другой — реципиентной («женской»). С. осуществляется половым фактором, выделившимся в автономное состояние из бактериальной хромосомы вместе с её фрагментом. При С. в реципиентную клетку с фрагментом хромосомы переходит и половой фактор, тогда как при обычной конъюгации включенный в хромосому половой фактор переходит в реципиентную клетку крайне редко. В результате С. клетки приобретают свойства донорских («мужских») клеток, т. е. способность в дальнейшем осуществлять при конъюгации как С., так и перенос бактериальной хромосомы. В остальном С. сходна с обычным конъюгационным переносом: клетки становятся Диплоидами по генам, содержащимся в перенесённом фрагменте, приобретая присущие диплоидам особенности взаимодействия между гомологичными генами. Стабильность таких частичных диплоидов зависит от величины перенесённого фрагмента хромосомы: с увеличением протяжённости фрагмента повышается вероятность рекомбинации между ним и гомологичным участком хромосомы, что обычно приводит к восстановлению гаплоидного состояния клетки. С. имеет сходство со специфической трансдукцией, отличаясь от неё тем, что осуществляется с помощью перешедшего в автономное состояние полового фактора, а не при посредстве умеренного фага, вышедшего из состава хромосомы бактерии.

Трансформация в генетике, внесение в клетку генетической информации при помощи изолированной дезоксирибонуклеиновой кислоты (ДНК). Т. приводит к появлению у трансформированной клетки (трансформанта) и её потомства новых признаков, характерных для объекта — источника ДНК. Явление Т. было открыто в 1928 английским учёным Ф. Гриффитом, наблюдавшим наследуемое восстановление синтеза капсульного полисахарида у пневмококков при заражении мышей смесью убитых нагреванием капсулированных бактерий и клеток, лишённых капсулы. Организм мыши в этих экспериментах играл роль своеобразного детектора, так как приобретение капсульного полисахарида сообщало клеткам, лишённым капсулы, способность вызывать смертельный для животного инфекционный процесс. В последующих экспериментах было установлено, что Т. имеет место и в том случае, когда вместо убитых клеток к лишённым капсулы пневмококкам добавляли экстракт из разрушенных капсулированных бактерий. В 1944 Освальд Эйвери с сотрудниками установил, что фактором, обеспечивающим Т., являются молекулы ДНК. Эта работа — первое исследование, доказавшее роль ДНК как носителя наследственной информации.

Трансдукция

опосредуемый бактериофагом (фагом) перенос ДНК от одной бактерии к другой. Часть бактериальной ДНК соединяется с фагом. При уничтожении бактери и хозяина фаг инфицирует другую бактерию и переносит к ней ДНК от предыдущего хозяина; она может соединиться с ДНК своего нового хозяина.

Конъюгация — однонаправленный перенос F-плазмиды от клетки-донора в клетку-реципиента, контактирующих друг с другом. При этом бактерии соединяются друг с другом особыми F-пилями (F-фимбриями), по каналам которых фрагменты ДНК и переносятся. Конъюгацию можно разбить на следующие этапы: 1) раскручивание F-плазмиды, 2) проникновение одной из цепей F-плазмиды в клетку-реципиента через F-пилю, 3) синтез комплементарной цепи на матрице одноцепочечной ДНК (происходит как в клетке-доноре (F+), так и в клетке-реципиенте (F-)).

Трансформация — однонаправленный перенос фрагментов ДНК от клетки-донора к клетке-реципиенту, не контактирующих друг с другом. При этом клетка-донор или «выделяет» из себя небольшой фрагмент ДНК, или ДНК попадает в окружающую среду после гибели этой клетки. В любом случае ДНК активно поглощается клеткой-реципиентом и встраивается в собственную «хромосому».

Вирусы

Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т.е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты — либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.

Капсид — оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты. Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта свободная форма существования называется вирионом. Вирусы обладают высокой специфичностью, т.е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.

Вирусы, паразитирующие в бактериальных клетках, называются бактериофагами. Бактериофаг состоит из головки, хвостика и хвостовых отростков, с помощью которых он осаждается на оболочке бактерий. В головке содержится ДНК или РНК. Фаг частично растворяет клеточную стенку и мембрану бактерии и за счет сократительной реакции хвостика «впрыскивает» свою нуклеиновую кислоту в ее клетку.

Только паразитируя в клетке-хозяине, вирус может репродуцироваться, воспроизводить себе подобных.

В цикле репродукции вируса можно выделить следующие стадии.

1Осаждение на поверхности клетки-хозяина.

2Проникновение вируса в клетку-хозяина (могут попасть в клетку-хозяина путем: а) «инъекции», б) растворения оболочки клетки вирусными ферментами, в) эндоцитоза; попав внутрь клетки вирус переводит ее белок-синтезирующий аппарат под собственный контроль).

3Встраивание вирусной ДНК в ДНК клетки-хозяина (у РНК-содержащих вирусов перед этим происходит обратная транскрипция — синтез ДНК на матрице РНК).

4Транскрипция вирусной РНК.

5Синтез вирусных белков.

6Синтез вирусных нуклеиновых кислот.

7Самосборка и выход из клетки дочерних вирусов. Затем клетка либо погибает, либо продолжает существовать и производить новые поколения вирусных частиц.