Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Численные Методы II.doc
Скачиваний:
85
Добавлен:
05.06.2015
Размер:
4.45 Mб
Скачать

Вариационная постановка начально-краевой задачи

Функционал начально-краевой задачи для гиперболического уравнения имеет вид

,

где функции Q=Q(x,y,t),gГ=gГ(x,y,t) и0(x,y) считаются известными и поэтому не варьируются. Вариация рассматриваемого функционала будет иметь вид

.

Применение к первому слагаемому подынтегрального выражения интегрирования «по частям» по времени t, а к третьему и четвёртому слагаемым – интегрирования поxиyс представлениемQиgГв следующем виде

позволяют записать вариацию функционала в виде

.

Использование необходимого условия существования экстремума рассматриваемого функционала

позволяет получить гиперболическое уравнение

его возможные варианты граничных условий на контуре области S

и его граничные условия по времени t

.

Возможные варианты граничных условий при t =0 и t = T преобразуются к двум начальным условиям при t = 0

.

Алгоритм метода конечных элементов

В соответствии с алгоритмом метода конечных элементов область поиска решения в пространстве {x, y} разбивается на треугольные элементы, для каждого из которых вводится своя локальная система координат ξ0η. Внутри каждого элемента искомое решение гиперболического уравнения представляется билинейной функцией

,

где коэффициенты s1, s2 и s3 являются функциями времени t. В матричной форме с заменой коэффициентов s1, s2 и s3 значениями искомого решения в узлах конечного элемента такое представление решения имеет вид

.

Здесь

, ,.

Аналогично представляются коэффициенты и функции гиперболического уравнения и его граничных и начальных условий в пределах каждого элемента

,

,

,

,

.

Затем для каждого конечного элемента записывается функционал, эквивалентный рассматриваемой начально-краевой задаче

.

После подстановки в это выражение представления искомого решения и коэффициентов, и выполнение операций интегрирования по площади и по контуру конечного элемента функционал записывается в виде

,

где

,

,

,

,

,

,

,

Здесь Dn, Сn, Kn и Bn – квадратные симметричные матрицы (3×3 элем.), последние две из которых принято называть матрицами жёсткости элемента и его границы, а zn, n и bn – векторы внешнего воздействия (по 3 элем.) на конечный элемент.

Следующий шаг алгоритма метода конечных элементов предполагает «сборку» конечно-элементной схемы, которая имеет целью получение функционала задачи для всей области поиска решения. Для этого функционалы для каждого элемента сначала суммируются

,

где D0, С0, K0 и B0 – объединённые матрицы, аналогичные ранее введённым матрицам Dn, Сn, Kn и Bn, z0, 0 и b0 – объединённые векторы внешнего воздействия на элементы, а u0 – объединённый вектор решения в узлах конечных элементов

,

,

.

После этого для описания способа объединения конечных элементов в область поиска решения S формируется матрица геометрии Г, которая связывает объединённый вектор решения u0 с вектором u обобщённого решения в узлах самой области S

,

где

.

В итоге функционал начально-краевой задачи для всей области S поиска решения будет иметь вид

,

где D = ГТD0Г, С = ГТС0Г, K = ГТK0Г и B = ГТB0Г – матрицы для всей области S поиска решения и её границы Г, аналогичные ранее введённым матрицам Dn, Сn, Kn и Bn, а z = ГТz0, = ГТ0 и b = ГТb0 – векторы внешнего воздействия.

Для получения конечно-элементных уравнений рассматриваемой начально-краевой задачи необходимо выполнить интегрирование первого подынтегрального слагаемого «по-частям» по времени

,

и потребовать минимума её функционала в виде необходимого условия его экстремума

.

Результатом этих действий с учётом того, что вариация δu не может быть тождественно равной нулю, является матричное уравнение, показывающее изменение искомого решения по времени, и соответствующие ему начальные условия

,

или

,,

где

.

Полученное матричное уравнение, как и в случае с параболическим уравнением, представляет собой систему обыкновенных линейных дифференциальных уравнений относительно значений решений в узлах конечно-элементной сетки – ui . Методы решения такой задачи известны по разделу «Решение задачи Коши для нормальных системобыкновенных дифференциальных и уравнений высших порядков» [3]. Однако перед решением полученную задачу Коши надо преобразовать с учётом граничных условий 1-го типа, поскольку граничные условия 2-го типа в методе конечных элементов выполняются автоматически.

Если в какой-либо узловой точке с номером n на границе Г задано граничное условие 1-го рода

,

то коэффициенты матриц D, С и и векторасоответствующие узловому значению решенияun преобразуются следующим способом: диагональные элементы n-х строк матриц D и С заменяются единицами, а все остальные элементы этих строк и соответствующих столбцов обнуляются. В n-ой строке и в n-м столбце матрицы обнуляются все элементы, аn-й элемент вектора заменяется выражением

.

Оценка погрешности решения

Оценка погрешности конечно-элементного решения начально-краевой задачи для гиперболического уравнения выполняется так же, как для параболического уравнения.

Если интервальная оценка погрешности численного решения задачи Коши на отрезке [0, t] пренебрежимо мала по сравнению с получаемой величиной погрешности конечно-элементного решения, то последняя оценивается по правилу Рунге

,

,

где и– два решения рассматриваемой начально-краевой задачи с размерами конечных элементов, отличающихся в два раза.