Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пособие_печ2.doc
Скачиваний:
221
Добавлен:
22.05.2015
Размер:
649.73 Кб
Скачать

13Структурно-механические свойства дисперсных систем

13.1 Структурообразование в коллоидных системах

Под структурой понимают взаимное расположение частей тела. Структура разбавленных агрегативно устойчивых лиозолей аналогична структуре истинных растворов. Увеличение концентрации частиц приводит к их агрегации, а затем к коагуляции. Возникновение структуры в дисперсных системах всегда связано с понятием коагуляции. Образование структуры проходит следующие стадии:

золь  структурированная жидкость  гель  твердообразные системы.

Структурирование приводит к изменению характера течения или полному отверждению жидкости и изменению всех ее свойств Дисперсные системы приобретают способность сопротивляться нагрузке, изменяется характер их течения и т.д. Особенности поведения различных систем при течение и деформации изучаются реологией – наукой о деформации и течении тел. Структурно-механические свойства дисперсных систем изучает физико-химическая механика, которая является разделом курс поверхностные явления и дисперсные системы. К структурно-механическим свойствам относятся: вязкость, пластичность, упругость и прочность.

Свободнодисперсное состояние лиозолей. Если частицы не взаимодействуют друг с другом и способны свободно перемещаться в дисперсионной среде, то такое состояние лиозолей называется свободнодисперсным. Свободнодисперсные системы текут подобно любой жидкости. Сопротивление внешнему давлению при течении характеризуется вязкостью. Но характер их течения отличается от ньютоновских жидкостей. Ньютоновскими жидкостями называются те, которые подчиняются закону Ньютона. Ньютон установил, что сила внутреннего трения (F) равная по величине, но обратная по направлению силе, приложенной извне, пропорциональна площади слоя (S), к которому приложена эта сила и изменению деформации во времени (скорости деформации dх/dτ):

F = η S(dх/dτ) = ηSγ

Коэффициент пропорциональности η называется коэффициент вязкости или вязкость жидкости. Отношение F/S = Р называется напряжением сдвига. Свободнодисперсные системы и ньютоновские жидкости текут при любом напряжении сдвига.

η = Р/γ. (XIII.1)

Для ньютоновских жидкостей вязкость – это величина постоянная при данной температуре и не зависит от напряжения сдвига ( рис. XIII.1).

Лиозоли имеют ряд особенностей. Они не подчиняются закону Ньютона. Вязкость золя всегда больше, чем вязкость дисперсионной среды. Из за наличия частиц дисперсной фазы течение золей характеризуется ранней турбулентностью ( т.е. число Рейнольдса Re для них меньше, чем для ньютоновских жидкостей). Вязкость золей зависит от способа измерения и градиента скорости, т.е. не является постоянной величиной. Поэтому коллоидные системы характеризуют эффективной вязкостью η*. Закон Ньютона для них запишется в виде

Р = η*γ. (XIII.2)

Зависимость вязкости свободнодисперсных золей от концентрации дисперсной фазы описывается различными формами уравнения Эйнштейна

(η – ηо)/ηо= Кφ;

η/ ηо= 1+ Кφ ;

η = ηо(1+ Кφ),

где η – вязкость золя;

ηо – вязкость дисперсионной среды;

η/ ηо– относительная вязкость золя; К – коэффициент, зависящий от формы частиц;

φ - объемная доля дисперсной фазы (Vдис) в общем объеме системы (V) (φ =Vдис/V).

Рисунок XIII.1 - Зависимость скорости деформации от напряжения сдвига для ньютоновских жидкостей (1) и свободнодисперных лиозолей (2).

Для сферических частиц при объемной доле дисперсной фазы ≤6 % уравнение Эйнштейна приобретает вид: η = ηо(1+ 2,5φ), при объемной доле дисперсной фазы ≤30 % это уравнение записывается в виде

η = ηо(1+ 2,5φ +14,7 φ2). (XIII.3)

Зависимость вязкости золя от концентрации дисперсной фазы представлена на рис.

Структурирование золей. При повышении концентрации или в результате коагуляции в золях образуется пространственная структура. Структура представляет собой пространственный каркас, образованный частицами дисперсной фазы, которые связаны между собой. Такие структурированные дисперсные системы называются связаннодисперсными. Они характеризуются новым комплексом свойств, проявляют прочность, пластичность, эластичность, хрупкость.

Классификация структур по П.А.Ребиндеру. В зависимости от природы действующих в структурированной системе сил П.А Ребиндер предложил различать два основных вида структур: коагуляционные (обратимо разрушающиеся) и конденсационно - кристаллизационные (необратимо разрушающиеся).

Рисунок XIII.2- Зависимость вязкости ньютоновской жидкости (кривая 1), свободнодисперсного лиозоля (кривая 2), структурированного золя (кривая 3) от концентрации дисперсной фазы

Коагуляционные структуры возникают в результате потери агрегативной устойчивости системы и взаимодействия частиц в дальнем энергетическом минимуме энергетической кривой. При этом частицы не слипаются полностью, а только слабо взаимодействуют друг с другом определенными частями, на которых снят фактор устойчивости. Частицы образуют пространственную сетку, в системе происходит гелеобразование. При этом раствор меняет свои механические свойства. Схема полученной структуры показана на рис. XIII.3.

Дисперсные системы, в которых произошло образование коагуляционной структуры, называются гелями. Гелеобразование – обратимый процесс. Ему способствуют повышение концентрации дисперсной фазы, повышение степени дисперсности, добавление электролитов, асимметрия частиц дисперсной фазы, понижение температуры, добавление ПАВ.

Рисунок XIII.3- Схема структуры геля

Гели проявляют ряд характерных свойств. Самопроизвольное восстановление геля после его механического разрушения называется тиксотропией. Различают тиксотропию прочностную, которая связана с разрушением и образованием пространственной сетки и тиксотропию вязкостную, которая связана с разрушением и образованием агрегатов частиц.

Для гелей характерно явление синерезиса. Это самопроизвольное уменьшение размеров геля с одновременным выделением из него дисперсионной среды. суть этого явления состоит в том, что при хранении происходит перегруппировка частиц в геле, связи между ними увеличиваются и они сближаются между собой. Это вызывает выдавливание дисперсионной среды.

Гели имеют свойство высыхать с образованием ксерогеля и набухать при добавлении дисперсионной среды.

Гели характеризуются структурной вязкостью. При наличии коагуляционной структуры течение геля начинается только после ее разрушения. При этом напряжение Рпревышает критическое напряжение сдвигаΘ, необходимое для разрушения структуры. ВеличинаΘназывается предел текучести, а течение гелей называется пластическим течением. Для описания свойств таких систем используют уравнение Бингама-Шведова:

Р- Θ = η’γ,

где η’ – пластическая вязкость.

Реологическая кривая для геля представлена на рис.

Рисунок XIII.4- Реологическая кривая геля

Конденсационно -кристаллизационные структуры возникают в результате химического взаимодействия между частицами и образования жесткой объемной структуры Этот процесс соответствует коагуляции в ближнем потенциальном минимуме энергетической кривой. Это типичные структуры для связаннодисперсных систем. Их разрушение происходит необратимо. Они не набухают, проявляют упруго-хрупкие свойства.

118