Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Занятие 3 Мод3 ВМС.doc
Скачиваний:
223
Добавлен:
25.03.2015
Размер:
466.94 Кб
Скачать

Осмотическое давление

Осмотическое давление – это одна из основных характеристик растворов как низкомолекулярных веществ, так и полимеров. Основная трудность при изучении поведения низкомолекулярных соединений в растворе осмотическим методом заключается в сложности подбора полупроницаемой мембраны (мембраны проницаемой для растворителя, но не проницаемой для растворённого вещества).

При работе с растворами ВМС легче подобрать полупроницаемую мембрану, так как размеры молекул растворителя и растворённого вещества значительно отличаются друг от друга. Зависимость осмотического давления раствора ВМС от величины молекулярной массы этого соединения широко используется для определения молекулярной массы и исследования взаимодействия между молекулами растворителя и макромолекулами полимера в растворе.

Осмотическим методом можно определять молекулярные масса, лежащие в области 30 000 – 1 500 000. Нижний определяемый предел молекулярных масс обусловлен возможностью изготовления полупроницаемой мембраны. Верхний предел зависит от точности фиксирования высоты поднятия столба раствора в осмометре.

Если раствор полимера отделить от растворителя мембраной, не проницаемой для растворённого вещества, но проницаемой для растворителя, то растворитель диффундирует сквозь мембрану в раствор. Это явление называется осмосом. Сила, действующая на единицу поверхности, препятствующая молекулам растворителя проникать через полупроницаемую перегородку, получила название осмотического давления.

Экспериментально установлено, что осмотическое давление разбавленного раствора удовлетворяет уравнению

πV = n1RT

в котором n1 – число молей растворённого вещества (для которого мембрана непроницаема) в объёме V; πосмотическое давление; R – газовая постоянная; T – абсолютная температура. Это соотношение открыто Вант-Гоффом в 1887 году. Данное уравнение идентично по форме уравнению состояния идеального газа.

Осмотическое давление можно выразить и по другому:

Pосм = ,

где С –концентрация растворённого вещества в г/л; М – молярная масса растворённого вещества. Отсюда следует, что уравнение можно использовать для определения молярных масс.

С повышением концентрации ВМС (кроме глобулярных белков) их осмотическое давление перестаёт подчиняться закону Вант-Гоффв и растёт быстрее. Причина этого явления заключается в том, что существует относительная независимость теплового движения отдельных сегментов линейных макромолекул ВМС. Каждая макромолекула ведёт себя как совокупность нескольких молекул меньшего размера. Это и проявляется в увеличении осмотического давления. Для расчёта осмотического давления растворов полимеров Галлер предложил уравнение:

Pосм =C + βC2,

где М – молярная масса ВМС, г/моль; С – концентрация раствора ВМС, г/л; β – коэффициент, учитывающий гибкость и форму макромолекул в растворе.

Коэффициент β зависит от природы растворителя и растворённого вещества, но не зависит от молярной массы растворённого полимера. С увеличением длины макромолекулы и разветвлённости цепи величина β растёт. Увеличение эффективного числа подвижных единиц (кинетически активных единиц) в растворе учитывается дополнительным слагаемым βС2. При небольших концентрациях полимера значение слагаемого невелико и уравнение Галлера переходит в уравнение Вант-Гоффа. Уравнение Галлера можно преобразовать в уравнение прямой линии, разделив обе части на С:

= + βC.

Измерив осмотическое давление растворов с различной концентрацией С, можно построить графическую зависимость величины Росм / С от С и найти значение молярной массы М полимера и коэффициент β (β =tgα, где α – угол наклона прямой линии на графике).

Осмотическим методом обычно пользуются для определения молярных масс ВМС в интервале от 10 000 до 70 000г/моль. Нижний предел зависит от свойств мембран, а верхний определяется той чувствительностью, при которой можно измерять осмотическое давление. Погрешность результатов измерений осмотического давления растворов ВМС может быть связана с присутствием в растворе низкомолекулярных электролитов. Поэтому растворы ВМС подвергают диализу пере началом опыта.

Молекулярная масса полимера, определённая по измерению осмотического давления, называется среднечисловой молекулярной массой (Мn). Такое название понятно, так как π = сRT, то есть осмотическое давление зависит только от числа частиц в растворе (R и Т величины постоянные).

Для определения молекулярных масс ВМС осмотический метод оказался очень полезным. В 1925 г Адер впервые достоверно определил молекулярную массу гемоглобина. Значение молекулярной массы гемоглобина равно 68 000. Эта величина позже подтверждена данными других учёных, определявших молекулярную массу гемоглобина другими методами.

Осмос играет огромную роль в природе. Все процессы обмена веществ в клетках организма – поступление питательных веществ в клетки, выделение из них продуктов обмена – имеют осмотическую природу. При осмосе молекулы растворителя преимущественно движутся через мембрану в том направлении, где концентрация частиц вещества больше, а концентрация растворителя меньше. Если осмотическое давление у растворов одинаковое, то такие растворы называются изотоническими и между ними происходит подлинно равновесный обмен молекулами растворителя. Если два раствора находятся в контакте и обладают разным осмотическим давлением, то тот раствор у которого осмотическое давление больше называется гипертоническим. Раствор, имеющий меньшее осмотическое давление, называется гипотоническим. Гипертонический раствор всасывает растворитель из гипотонического, стремясь выровнять концентрации этих контактирующих растворов, путём перераспределения растворителя.

Осмотическая ячейка – это система, отделённая от окружающей среды полупроницаемой мембраной. Все клетки живых организмов являются осмотическими ячейками. Следовательно, клетки способны всасывать растворитель из окружающей среды или отдавать растворитель из клетки в окружающую среду, что зависит от концентрации растворов, отделённых друг от друга полупроницаемой мембраной. Поэтому можно рассмотреть следующие два случая.

Эндоосмос – это движение растворителя в осмотическую ячейку из окружающей среды. Условия эндосмоса: концентрация наружного раствора должна быть меньше концентрации раствора в осмотической ячейке и осмотическое давление наружного раствора должно тоже быть меньше осмотического давления раствора внутри ячейки. В результате такого процесса растворитель (вода) диффундирует в клетку, происходит набухание клетки с появлением напряженного состояния клетки. Гидростатическое давление, возникшее во внутриклеточных структурах в результате осмоса, называют тургором. Это давление придаёт прочность и упругость тканям живых организмах.

В растительном мире тургор помогает растениям сохранять вертикальное положение и определённую форму. Если клетка отмирает, оболочка теряет свойство полупроницаемости, тургор исчезает (растение вянет).

Эндоосмос может привести к разрушению клеточной мембраны, если прочность оболочки клетки небольшая. В процессе эндосмоса клетка обводняется, разбухает и разрушается и происходит лизис клетки. Эндоосмос является причиной гемолиза эритроцитов крови, при гемолизе из эритроцитов выходит гемоглобин в кровяную плазму, эритроциты разрушаются.

Экзоосмос – это движение растворителя из осмотической ячейки в окружающую среду. Условия экзосмоса: концентрация наружного раствора должна быть больше концентрации раствора в осмотической ячейки и осмотическое давление наружного раствора должно быть больше осмотического давления раствора, находящегося внутри ячейки. При экзосмосе вода проникает из клетки в плазму, клетка сморщивается, сжимается. Это явление называют плазмолизом. При плазмолизе происходит отслаивание протопласта от клеточной стенки при действии гипертонического раствора на клетку. Экзоосмос происходит наблюдается, когда клетка находится в гипертоническом растворе. Явление экзосмоса можно наблюдать, если посыпать сахаром ягоды и фрукты или если посыпать солью мясо и рыбу. При этом уничтожаются микроорганизмы и происходит консервирование продуктов.

Осмотические свойства растворов необходимо учитывать при приготовлении физиологических растворов и растворов лекарственных препаратов для внутривенных вливаний. Вводимый раствор не должен быть токсичным и его осмотическое давление должно быть таким же, как у кровяной плазмы. Поэтому концентрацию таких растворов выражают через осмолярную концентрацию (осмолярность).

Осмолярная концентрация – это суммарное молярное количество всех кинетических активных, т.е. способных к самостоятельному движению, частиц, содержащихся в 1 литре раствора, независимо от их формы, размера и природы.

Осмолярная концентрация связана с его молярной концентрацией через изотонический коэффициент сосм = ic(x).

В медицине обычно используют изотонические растворы, но иногда применяют и гипертонические. Так, в хирургии используют гипертонические повязки (повязки пропитанные, например, 10% раствором хлорида натрия), этими повязками покрывают раны: гипертоническаие повязки оттягивают на себя жидкость и очищают рану от микроорганизмов, продуктов распада и т.д.

У человека во многих физиологических системах осмотическое давление имеет постоянное значение. Постоянство осмотического давления называется изоосмией. Так, например, осмотическое давление в крови человека постоянно: π = 0,78 МПа (7,7 атм) при 370С. В организме человека и высокоразвитых животных специальные биологические механизмы поддерживают постоянным осмотическое давление всех тканевых жидкостей. Любое нарушение осмотического давления в тканях вызывает различные заболевания.

Онкотическое давление является частью осмотического давдения крови и зависит от содержания в крови высокомолекулярных веществ (белков). Онкотическое давление крови составляет 0,5% суммарного осмотического давления плазмы крови. Онкотическое давление в большей степени зависит от содержания в крови альбуминов (80% онкотического давления создают альбумины). Это связано с тем, что у альбуминов молекулярная масса относительно мала и в крови их достаточно много. Онкотическое давление играет важную роль в регуляции водного обмена в организме. Чем больше онкотическое давление, тем больше воды удерживается в сосудистом русле и тем меньше воды переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы и на всасывание воды в кишечнике. Поэтому при заболеваниях, сопровождающимися уменьшением концентрации в крови белков (особенно альбумина) онкотическое давление снижается. Это приводит к накоплению жидкости в межклеточном пространстве, что и вызывает появление отёков.

Даже небольшие изменения осмотического давления вызывают чувство дискомфорта. Например, чувство жажды, возникающее после приёма большого количества солёной пищи, связано с тем, что при этом возрастает содержание солей в клеточном соке организма. Потребность организма в воде для уменьшения осмотического давления тканевых растворов и проявляется в виде чувства жажды. Известно, что в период сильной жары туристам и солдатам во время походов, а также рабочим горячих цехов дают солёное питьё (а ещё лучше поваренную соль). Этот, на первый взгляд, парадокс объясняется весьма просто. При сильной жаре с потом из организма удаляется значительное количество солей. Поскольку содержание солей в поте выше, чем в клеточном соке тканей человека, это приводит к нарушению осморегуляции, и осмотическое давление тканей становится ниже нормального. Однако организм на любое отклонение (как на повышение, так и на понижение осмотического давления) отвечает одинаковой реакцией – чувством жажды. Человек пьёт воду, но она только усиливает жажду. Чтобы избавиться от жажды, надо увеличить осмотическое давление тканей, то есть ввести в них не воду, а дополнительное количество солей.

Для иллюстрации роли осмоса в природе рассмотрим механизм поступления воды и минеральных солей в ствол дерева. Клетки корневой системы растений находятся в почве и соприкасаются с почвенной жидкостью. Содержание солей в почвенной жидкости меньше, чем в клеточной жидкости. Поэтому вода засасывается клетки растений, контактирующих с почвой, разбавляя в них клеточный сок. Такой сок становится гипотоническим по отношению к соку в следующих клетках, расположенных выше, поэтому вода начинает переходить в эти клетки. Процесс передачи воды от клетки к клетке продолжается, так вода поднимается вверх и может подниматься на многие десятки метров.

Осмосом объясняется и плохое произрастание растений на засолённых почвах. На солончаках вблизи моря (или солёных озёр) почва имеет высокую влажность и содержит достаточное количество минеральных веществ необходимых для жизни растений. Однако осмотическое давление почвенной жидкости выше осмотического давления клеточной жидкости растений, поэтому вода из сока клеток уходит в почвенную жидкость. Вследствие экзосмоса на солончаках растения погибают, так как почва высасывает воду из растений.