Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Занятие 3 Мод3 ВМС.doc
Скачиваний:
223
Добавлен:
25.03.2015
Размер:
466.94 Кб
Скачать

Значение белков в питании

Белки – необходимая составная часть продуктов питания. Проблема пищевого белка стоит очень остро. По данным Международной организации по продовольствию и сельскому хозяйству при ООН больше половины человечества не получает с пищей необходимого количества белка. Недостаток белка в пище вызывает тяжелое заболевание – квашиоркор.

В процессе пищеварения белки подвергаются гидролизу до аминокислот, которые всасываются в кровь. Пищевая ценность белков зависит от их аминокислотного состава, содержания в них так называемых незаменимых аминокислот, не синтезирующихся в организмах. Для человека незаменимы следующие кислоты: триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин, фенилаланин. В питательном отношении растительные белки менее ценны, чем животные: они беднее лизином, метионином и триптофаном.

Общая характеристика растворов вмс

Высокомолекулярные вещества (или полимеры) растворяются в различных низкомолекулярных жидкостях, образуя устойчивые равновесные системы с молекулярной дисперсностью компонентов. Таким образом, растворы полимеров являются гомогенными системами, истинными растворами. Являясь истинными растворами, растворы ВМС всё же отличаются от растворов низкомолекулярных веществ, что связано с огромными размерами макромолекул. Однако, несмотря на огромные размеры молекул ВМС в растворах отсутствует граница раздела фаз, так как в одном направлении макромолекула имеет достаточно большую длину, а толщина макромолекулы имеет молекулярные размеры.

Кроме того, на поведение растворов полимеров сильное влияние оказывают форма и отдельные фрагменты строения макромолекул.

Растворение ВМС осуществляется с образованием менее упорядоченной системы из более упорядоченной и, значит, этот процесс протекает с увеличением энтропии (∆S > 0). Растворение ВМС – процесс самопроизвольный, следовательно, при растворении полимеров уменьшается свободная энергия: ∆G = ∆H - TS < 0.

Изменение энтальпии (знак ∆Н) при растворении может быть положительным (эндотермический процесс), отрицательным (экзотермический процесс) или равным нулю.

Так как растворы полимеров образуются самопроизвольно с уменьшением свободной энергии, они являются термодинамически устойчивыми системами, которые могут существовать без стабилизаторов неограниченное время. В этом заключается их основное отличие от лиофобных коллоидных систем. В отличие от лиофобных коллоидных систем растворы ВМС являются равновеснымим системами.

Растворы ВМС, подобно растворам низкомолекулярных соединений, могут быть и молекулярными, и ионными, причём в последнем случае природа зарядов связана с наличием функциональных групп.

Взаимодействие вмс с растворителем

При взаимодействии ВМС с растворителем происходит их набухание.

Набуханием полимера называется увеличение его объёма и массы во времени при контакте с растворителем.

При набухании объём и масса полимера могут увеличиться в 10 – 15 раз.

Количественной мерой набухания является степень набухания α:

α = ∙ 100% или α = ∙ 100%

где m0 и V0 – масса и объём сухого полимера; m и V – масса и объём набухшего полимера.

Набухание может быть ограниченным и неограниченным. В случае ограниченного набухания m и α достигают постоянных при данной температуре и концентрации предельных значений mи α (кривая 1) и далее не изменяются. При неограниченном набухании (кривая 2) эти параметры достигают максимальных значений, которые затем уменьшаются за счёт растворения полимера. В этом случае набухание – первая стадия растворения полимера.

Р

ис. Кинетические кривые ограниченного (1) и неограниченного (2) набухания.

Причина набухания состоит в различии свойств ВМС и низкомолекулярных соединений (НМС). Молекулы ВМС отличаются от низкомолекулярных соединений на несколько порядков по размерам и по подвижности. Молекулы НМС быстро проникают в сетку полимера, раздвигая цепи и увеличивая его объём. Гибкость цепей ВМС облегчает проникновение малых молекул НМС в полимер. При набухании происходит одностороннее смещение малых молекул, обусловленное большими различиями в размерах молекул.

Однако набухание – это не простое механическое вхождение молекул НМС в пустоты полимера. Набухание это межмолекулярное взаимодействие, обусловленное, главным образом, сольватацией макромолекул. Полимер набухает не в любом, а лишь в «хорошем» растворителе, т.е. в том растворителе с которым он взаимодействует. Так, полярные полимеры набухают в полярных растворителях, например, белки в воде, а неполярные – в неполярных (каучук в бензоле).

Степень ограниченности процесса набухания и возможность самопроизвольного растворения определяются соотношением энергии связи в структуре полимера и энергии сольватации полимерной цепи с учётом энтропийного фактора.

Набухание сопровождает жизнедеятельность всех растительных и животных организмов. Так, первой фазой прорастания зерна является его набухание, т.е. увеличение его объёма после смачивания. Лишь после набухания зерна возможны реакции, сопровождающие рост и развитие, не идущие при сухом состоянии.

Почки человека помимо основной функции (выведение из организма продуктов обмена) осуществляют регулирование воды, а их соединительная ткань служит индикатором водного обмена между кровью и клетками. Вследствие набухания соединительная ткань способна воспринимать излишек воды и отдавать его клеткам или направлять в кровь.

В период интенсивного роста организма, усиленного деления клеток степень набухания велика. Так, например, в начале утробной жизни младенца степень набухания велика и вода составляет 95% массы плода. Содержание воды у новорожденного составляет уже 70 – 75%, у взрослого 50 – 60%. Постепенное старение организма сопровождается уменьшением способности к набуханию, в живом организме к старости замедляются процессы обмена, происходит буквально высыхание человека, уменьшается его объём. Появляются морщины, являющиеся характерным признаком старости.