
- •4. Измерение мощности
- •4.1. Общие сведения и классификация методов и приборов для измерения мощности
- •4.2. Измерение мощности в цепях постоянного и переменного тока
- •4.3. Измерение поглощаемой мощности на высоких и сверхвысоких частотах
- •4.3.1. Тепловые методы
- •4.3.2. Электронные методы
- •4.4. Измерение проходящей мощности
- •4.4.1. Метод с использованием направленных ответвителей и зондов
- •4.4.2. Метод поглощающей стенки
- •4.4.3. Метод с использованием эффекта холла
- •4.4.4. Пондеромоторный метод
- •5. Измерение частоты и интервалов времени
- •5.1. Общие сведения и классификация приборов для измерения частоты и интервалов времени
- •5.2. Резонансные частотомеры
- •5.3. Цифровые частотомеры
- •5.3.1. Типовая структурная схема и основные параметры цифрового частотомера
- •5.3.2. Цифровые частотомеры низких и высоких частот
- •5.4. Измерители интервалов времени
4.3. Измерение поглощаемой мощности на высоких и сверхвысоких частотах
Измерение поглощаемой мощности наиболее распространено на ВЧ и СВЧ. Первичные преобразователи ваттметров поглощаемой мощности являются эквивалентом согласованной нагрузки и, как видно из рис. 4.1, а, включаются на конце передающей линии. Для измерения поглощаемой мощности может быть использовано большинство методов, перечисленных в § 4.1.
4.3.1. Тепловые методы
Тепловые методы основаны на преобразовании электромагнитной энергии в тепловую с последующим измерением количества выделенного тепла (приращения температуры) либо замещающей мощности постоянного тока (низкой частоты), вызывающей эквивалентное приращение температуры. Основным достоинством тепловых ваттметров является возможность калибровки и аттестации их на постоянном токе, что способствует достижению высокой точности измерения мощности.
Калориметрический метод
Калориметрический метод является одним из наиболее точных методов измерения мощности на ВЧ и СВЧ. Устройство калориметрических ваттметров весьма разнообразно и определяется уровнем измеряемой мощности, диапазоном частот и требуемой точностью. Однако во всех случаях первичным преобразователем ваттметра является калориметр, где и осуществляется преобразование электромагнитной энергии в тепловую. Все калориметры подразделяются на калориметры с переменной и постоянной температурой.
Калориметры с переменной температурой могут конструктивно выполняться как статические и проточные. В статических калориметрах рабочее тело, где электромагнитная энергия превращается в тепловую, неподвижно и в процессе измерений не изменяет формы и физических свойств. Рабочим телом могут служить вода и твердые (объемные или пленочные) поглотители. В первом случае калориметр представляет собой сосуд Дьюара, а калориметры с твердыми поглотителями называют «сухими». Сухие калориметры наиболее распространены и конструктивно представляют собой коаксиальные (рис. 4.3, а) или волноводные (рис. 4.3, б) согласованные нагрузки, в которых повышение температуры рабочего тела измеряется с помощью термопар. Калибровка в таких калориметрах осуществляется постоянным током, который проходит либо непосредственно по нагрузке (СВЧ резистор на рис. 4.3, а), либо по специальному подогревателю (обмотка на рис. 4.3, б).
Рис. 4.3. Схематическое устройство сухого калориметра:
а — коаксиального: 1 — внутренний проводник; 2 — внешний проводник; 3 — СВЧ резистор; 4 — экран; б — волноводного; 1 — волновод; 2 — экран; 3 — подогреватель; 4 —поглотитель.
В проточных калориметрах рабочее тело представляет собой циркулирующую жидкость, а процесс измерения мощности сводится к измерению приращения температуры и расхода этой жидкости. Такие калориметры также могут быть коаксиальными (рис. 4.4, а) и волноводными (рис. 4.4,6). В качестве жидкости используется вода, кремний-органическая жидкость и др.
Рис. 4.4. Схематическое устройство проточного калориметра:
а — коаксиального: 1—диэлектрическая шайба; 2— корпус нагрузки; б— волноводного: / — корпус нагрузки; 2 — диэлектрический клин.
Вторая группа калориметров — калориметры с постоянной температурой — представлена в настоящее время калориметрами с фазовым переходом, компенсационными калориметрами и калориметрами, основанными на методе замещения. В калориметрах с фазовым переходом электромагнитная энергия, превращенная в тепловую, определяется по количеству твердого вещества (например, льда), перешедшего в жидкое состояние. В компенсационных калориметрах одновременно и с одинаковой скоростью протекают процессы выделения и эквивалентного поглощения тепла. Для калориметров, основанных на методе замещения, характерен предварительный подогрев рабочего тела постоянным или переменным током. После подачи Рх тепловой режим рабочего тела поддерживают неизменным, уменьшая мощность подогрева, а значение Рх определяют по изменению этой мощности.
В ИУ калориметрических ваттметров может быть реализован как метод прямого преобразования путем измерения приращения температуры рабочего тела, так и метод сравнения путем измерения замещающей мощности постоянного или переменного тока. Калориметрические ваттметры прямого преобразования почти не применяются из-за малой чувствительности и низкой точности. Рассмотрим поэтому калориметрический ваттметр с проточным калориметром, реализующий метод сравнения.
Рис. 4.5. Структурная схема калориметрического ваттметра с проточным калориметром.
Как видно из рис. 4,5, в процессе измерения осуществляется сравнение теплового воздействия измеряемой мощности Рх, подаваемой в первичный преобразователь I, с тепловым воздействием мощности постоянного тока, подаваемой в опорную нагрузку 4. Процесс измерения замещающей мощности автоматизирован благодаря замкнутой циркуляционной системе. Рабочая и опорная нагрузки последовательно омываются одним потоком жидкости, причем за счет теплообменника 5 обеспечивается равенство температур жидкости на входах обеих нагрузок. В конструкции нагрузок предусмотрено размещение терморезисторов 2 и 3, которые совместно с резисторами R1 и R2 образуют мост, питаемый от генератора низкой частоты. При отсутствии Рх температура терморезисторов одинакова и мост сбалансирован. После подачи Рх мост разбалансируется, и сигнал разбаланса через усилитель переменного тока поступает на детектор, где преобразуется в постоянное напряжение компенсации. Это напряжение через УПТ подается в опорную нагрузку и одновременно измеряется магнитоэлектрическим прибором. Сопротивления терморезисторов в результате изменения температуры опорной нагрузки выравниваются, баланс моста восстанавливается, а показание прибора оказывается пропорциональным измеряемому значению Рх. Таким образом, мы получаем прямоотсчетный калориметрический ваттметр с автоматической термобалансировкой.
Основными достоинствами калориметрических ваттметров являются исключительно широкий частотный диапазон, широкие пределы и высокая точность измерений, определяемая в основном погрешностью измерения мощности замещения (напряжения компенсации) и параметрами рабочей нагрузки, которые точно известны для каждого ваттметра. Поэтому на базе калориметрического метода разработаны государственные специальные эталоны единицы мощности электромагнитных колебаний в коаксиальных и волноводных трактах, утвержденные ГОСТ 8.073—73, ГОСТ 8.102—73 и ГОСТ 8.277—78. Они обеспечивают воспроизведение ватта при СКО не более 0,15 % и неисключенной систематической погрешности, не превышающей 0,5 %. Недостатки калориметрических ваттметров: большая инерционность (время установления показаний может достигать и нескольких минут) и сложность в эксплуатации.
Болометрический (термисторный) метод
Болометрический (термисторный) метод основан на изменении сопротивления резистивного термочувствительного элемента, в котором электромагнитная энергия превращается в тепловую. В диапазоне СВЧ применяют два вида термочувствительных элементов — болометры и термисторы (соответственно ваттметры называются болометрическими или термисторными). Рассмотрим основные характеристики их.
Болометр представляет собой проволоку диаметром ~ 1 мкм и длиной 0,8...1,2 мм (проволочные болометры) или пленку из платины (палладия), нанесенную на подложку из стекла или слюды (пленочные болометры). Проволочные болометры запаивают в стеклянный вакуумный или заполненный инертным газом баллон, а пленочные болометры выполняют в виде специальной вставки.
Термисторы изготовляют из полупроводниковой массы в виде бусинки диаметром 0,2.„0,5 мм или цилиндра диаметром 0,2...0,3 мм и длиной 1...1.5 мм. Полупроводниковая масса состоит из порошкообразной смеси оксидов меди, марганца, кобальта, титана и др., спекаемой в определенной среде. В тело термистора ввариваются выводы из платины (платиноиридиевого сплава), а сам термистор может помещаться в стеклянный баллон или эксплуатироваться без него (безбалонные термисторы).
Основными характеристиками болометров и термисторов являются сопротивление в рабочей точке Rt° при котором болометр (термистор) согласуется с СВЧ трактом, чувствительность S t° = Rt° /dP, тепловая постоянная и максимально допустимая мощность рассеяния.
На рис. 4.6. представлены типичные зависимости Rt° (P) для болометров (рис. 4.6, а) и термисторов (рис. 4.6, б). Видно, что термистор изменяет свое сопротивление в более широких пределах, чем болометр. Это определяет более высокую чувствительность термистора (St° = 5... 100 Ом/мВт) по сравнению с болометром (St°=3…15 Ом/мВт) и облегчает согласование термистора с трактом.
Рис. 4.6. Рабочие характеристики термочувствительных элементов:
а —болометра; б — термистора.
В то же время проволочные болометры имеют значительно меньшую тепловую постоянную (10-3... 10-5с), чем термисторы (0,1 ... 1 с), и могут применяться для измерения как Р, так и Ри. Что касается пленочных болометров, то основное достоинство их — возможность расширения пределов измерения Р от 10 мВт (термисторы и проволочные болометры) до 1 Вт. Таким образом, в зависимости от конкретных требований ваттметры могут комплектоваться болометрическими или термисторными головками.
Рис. 4.7. Коаксиальная болометрическая (термисторная) головка:
а — устройство; б — эквивалентная схема.
Конструктивно головки представляют собой отрезки коаксиальных или волноводных трактов со встроенными болометрами или термисторами. При этом важно разделить цепи питания болометра (термистора) по постоянному току (для включения в схему ИУ) и СВЧ (для подачи Рх). В коаксиальных головках это достигается с помощью высокочастотного дросселя и конструктивного конденсатора (рис. 4.7, а). Дроссель (Др) представляет собой спираль Архимеда, не нарушающую согласования головки с трактом подачи Рх, а конструктивный конденсатор Ск образован внешним проводником коаксиала и оконечной короткозамыкающей заглушкой. Болометр (термистор) конструктивно встроен в центральный проводник коаксиала, что облегчает согласование головки с трактом. Эквивалентная схема головки (рис. 4.7, б) поясняет способ разделения цепей питания.
В волноводных головках применяется переход от прямоугольного волновода к П-образному (рис. 4.8), чем достигается согласование головки с трактом в широком диапазоне частот. Конструктивный конденсатор Ск образуется с помощью изоляционной про кладки в месте одного из выводов болометра (термистора).
В качестве ИУ болометрических (термисторных) ваттметров применяют измерительные мосты. В простейшем случае это четы-рехплечий уравновешенный мост постоянного тока, в одно из плеч которого включен болометр (термистор). Как видно из рис. 4.9, мост является равноплечим, причем R выбираются из условия согласования болометра (термистора) с трактом.
Перед измерением мост балансируется с помощью потенциометра Ro, который регулирует ток питания моста I, изменяя при этом Rt° (см. рис. 4.6) до Rt° = R. Момент баланса фиксируется с помощью магнитоэлектрического индикатора, а по шкале амперметра отсчитывается значение 1%. Очевидно, что мощность, рассеиваемая в этом случае на болометре (термисторе), равна РТ = (I1 I1 R)/4.
Рис. 4.8. Волноводная болометрическая (термисторная) головка.
Рис. 4.9. Простейшая схема ИУ болометрического (тер-мисторного) ваттметра.
После подачи Рх мост вновь балансируется уменьшением тока питания от значения I1 до значения I2 Очевидно,
откуда
(4.13)
Легко видеть, что при точном измерении значений I1 и I2 расчет Рх по формуле (4.13) также будет точным. Однако при малых Рх значения I1 и I2 очень близки, и точно различить их не удается. Поэтому в практических схемах мостов измеряют величину ΔI= I1 - I2 , а искомое значение Рх определяют по следующей формуле, вытекающей из (4.13):
Px =(R/4)*ΔI(2I1- ΔI) (4.14)
Из (4.14) видно, что при постоянных R и I1 шкала прибора, измеряющего ΔI, может быть проградуирована в значениях Рх, и мы получаем прямоотсчетный ваттметр.
По другому принципу может осуществляться измерение Ри в болометрических ваттметрах. В процессе измерения под действием радиоимпульса болометр нагревается, сопротивление его изменяется, и при постоянном токе питания напряжение на болометре будет иметь форму пилообразных видеоимпульсов. Если радиоимпульсы короче тепловой постоянной болометра, то амплитуда видеоимпульсов будет пропорциональна энергии радиоимпульсов. Эти видеоимпульсы усиливаются, дифференцируются и подаются на импульсный вольтметр, шкала которого может быть проградуирована в значениях Ри. Такие ваттметры называются интегрально-дифференциальными.
Основными достоинствами болометрических и термисторных ваттметров являются широкий частотный диапазон, высокая чувствительность, позволяющая измерять значения Рх порядка единиц микроватт, малое время установления показаний и высокая точность, обеспечиваемая параметрами головок и измерительных мостов. Наряду с калориметрическим этот метод также использован при создании государственных специальных эталонов единицы мощности электромагнитных колебаний, утвержденных ГОСТ 8.073—73 и ГОСТ 8.047—80. К недостаткам ваттметров, существенно ограничивающим их применение, необходимо отнести малые пределы измерений и большой температурный дрейф, требующий применения специальных схем термокомпенсации.
Термоэлектрический метод
Термоэлектрический метод основан на преобразовании с помощью термопар энергии СВЧ в тепловую и измерении возникающей термоЭДС ЕТ, пропорциональной рассеиваемой в термопаре СВЧ мощности. Таким образом, термопары одновременно выполняют (в отличие от сухого калориметра) функции согласованной нагрузки и термометра.
Термоэлектрический метод, как и болометрический, применим для измерения малых уровней мощности. Однако он имеет существенное преимущество перед болометрическим: значение ЕТ практически не зависит от температуры окружающей среды, и отпадает необходимость в специальных схемах термокомпенсации. Кроме того, термопары не требуют начального подогрева, имеют высокую чувствительность и совместно с простым ИУ позволяют реализовывать термоэлектрические ваттметры прямого преобразования.
Рис. 4.10. Эквивалентная схема термоэлектрического преобразователя с дифференциальным включением термопар.
Рис. 4.11. Амплитудная характеристика термоэлектрического преобразователя.
Конструкция термоэлектрических головок коаксиального и волноводного типа в целом аналогична конструкции болометрических (см. рис. 4.7 и 4.8). Для повышения чувствительности термопары выполняют дифференциальными, причем по постоянному току ветви термопары соединяют последовательно, а по высокой частоте — параллельно. Как видно из эквивалентной схемы рис. 4.10, это достигается с помощью конструктивного конденсатора С2. Конденсатор С1 (также конструктивный) позволяет развязать цепи постоянного тока и СВЧ. Значения RТ1 и RТ2 выбирают из условия согласования головки. В основном применяют пленочные термопары (металлические пленки, напыленные на диэлектрические подложки), причем наибольшее распространение получили термопары висмут — сурьма, копель — сурьма и хромель — копель.
Основной характеристикой термоэлектрического преобразователя является амплитудная характеристика ЕТ(РХ), типичный вид которой представлен на рис. 4.11. Линейный участок характеристики определяет пределы измерения Рх, причем максимальную линейность имеют характеристики дифференциальных термопар.
Поскольку выходным сигналом преобразователя является постоянное напряжение, ИУ термоэлектрических ваттметров представляет собой вольтметр постоянного тока, шкала которого проградуирована в значениях Рх. В практических схемах ваттметров применяют как аналоговые, так и цифровые вольтметры. Дополнительным функциональным узлом ИУ является калибратор мощности— стабилизированный генератор меандра частоты 20...50 кГц. С его помощью производится калибровка ваттметра перед началом работы и после смены преобразователя. Благодаря этому устраняется разброс характеристик ЕТ(РХ).
Основные достоинства и параметры термоэлектрических ваттметров те же, что и у болометрических (термисторных). Дополнительным важным преимуществом, как уже отмечалось, является малая зависимость результатов измерений от температуры окружающей среды. Основной недостаток ваттметров — малые пределы измерений и малая устойчивость к перегрузкам.