Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Елизаров - Электрорадиоизмерения (4-6).doc
Скачиваний:
29
Добавлен:
22.11.2019
Размер:
26.81 Mб
Скачать

4.3. Измерение поглощаемой мощности на высоких и сверхвысоких частотах

Измерение поглощаемой мощности наиболее распространено на ВЧ и СВЧ. Первичные преобразователи ваттметров поглощаемой мощности являются эквивалентом согласованной нагрузки и, как видно из рис. 4.1, а, включаются на конце передающей линии. Для измерения поглощаемой мощности может быть использовано боль­шинство методов, перечисленных в § 4.1.

4.3.1. Тепловые методы

Тепловые методы основаны на преобразовании электромагнит­ной энергии в тепловую с последующим измерением количества вы­деленного тепла (приращения температуры) либо замещающей мощности постоянного тока (низкой частоты), вызывающей экви­валентное приращение температуры. Основным достоинством теп­ловых ваттметров является возможность калибровки и аттестации их на постоянном токе, что способствует достижению высокой точ­ности измерения мощности.

Калориметрический метод

Калориметрический метод является одним из наиболее точных методов измерения мощности на ВЧ и СВЧ. Устройство калоримет­рических ваттметров весьма разнообразно и определяется уровнем измеряемой мощности, диапазоном частот и требуемой точностью. Однако во всех случаях первичным преобразователем ваттметра является калориметр, где и осуществляется преобразование электро­магнитной энергии в тепловую. Все калориметры подразделяются на калориметры с переменной и постоянной температурой.

Калориметры с переменной температурой могут конструктивно выполняться как статические и проточные. В статических калориметрах рабочее тело, где электромагнитная энергия превра­щается в тепловую, неподвижно и в процессе измерений не изменяет формы и физических свойств. Рабочим телом могут служить вода и твердые (объемные или пленочные) поглотители. В первом случае калориметр представляет собой сосуд Дьюара, а калориметры с твердыми поглотителями называют «сухими». Сухие калориметры наиболее распространены и конструктивно представляют собой коаксиальные (рис. 4.3, а) или волноводные (рис. 4.3, б) согласованные нагрузки, в которых повышение температуры рабочего тела измеряется с помощью термопар. Калибровка в таких калоримет­рах осуществляется постоянным током, который проходит либо не­посредственно по нагрузке (СВЧ резистор на рис. 4.3, а), либо по специальному подогревателю (обмотка на рис. 4.3, б).

Рис. 4.3. Схематическое устройство сухого калориметра:

а — коаксиального: 1 — внутренний проводник; 2 — внешний проводник; 3 — СВЧ ре­зистор; 4 — экран; б — волноводного; 1 — волновод; 2 — экран; 3 — подогреватель; 4 —поглотитель.

В проточных калориметрах рабочее тело представляет со­бой циркулирующую жидкость, а процесс измерения мощности сво­дится к измерению приращения температуры и расхода этой жид­кости. Такие калориметры также могут быть коаксиальными (рис. 4.4, а) и волноводными (рис. 4.4,6). В качестве жидкости используется вода, кремний-органическая жидкость и др.

Рис. 4.4. Схематическое устройство проточного калориметра:

а — коаксиального: 1—диэлектрическая шайба; 2— корпус нагрузки; б— волноводного: / — корпус нагрузки; 2 — диэлектрический клин.

Вторая группа калориметров — калориметры с постоянной температурой — представлена в настоящее время калориметрами с фазовым переходом, компенса­ционными калориметрами и калориметрами, основанными на методе замещения. В калориметрах с фазовым переходом электромагнитная энергия, превращенная в тепловую, определяется по количеству твердого вещества (например, льда), перешедшего в жидкое состояние. В компенсационных калориметрах одновремен­но и с одинаковой скоростью протекают процессы выделения и эквивалентного поглощения тепла. Для калориметров, основанных на методе замещения, харак­терен предварительный подогрев рабочего тела постоянным или переменным то­ком. После подачи Рх тепловой режим рабочего тела поддерживают неизменным, уменьшая мощность подогрева, а значение Рх определяют по изменению этой мощности.

В ИУ калориметрических ваттметров может быть реализован как метод прямого преобразования путем измерения приращения температуры рабочего тела, так и метод сравнения путем измере­ния замещающей мощности постоянного или переменного тока. Ка­лориметрические ваттметры прямого преобразования почти не при­меняются из-за малой чувствительности и низкой точности. Рассмот­рим поэтому калориметрический ваттметр с проточным калоримет­ром, реализующий метод сравнения.

Рис. 4.5. Структурная схема калориметрического ваттметра с проточным калориметром.

Как видно из рис. 4,5, в процессе измерения осуществляется срав­нение теплового воздействия измеряемой мощности Рх, подаваемой в первичный преобразователь I, с тепловым воздействием мощно­сти постоянного тока, подаваемой в опорную нагрузку 4. Процесс измерения замещающей мощности автоматизирован благодаря замкнутой циркуляционной системе. Рабочая и опорная нагрузки последовательно омываются одним потоком жидкости, причем за счет теплообменника 5 обеспечивается равенство температур жид­кости на входах обеих нагрузок. В конструкции нагрузок предусмот­рено размещение терморезисторов 2 и 3, которые совместно с рези­сторами R1 и R2 образуют мост, питаемый от генератора низкой частоты. При отсутствии Рх температура терморезисторов одинако­ва и мост сбалансирован. После подачи Рх мост разбалансируется, и сигнал разбаланса через усилитель переменного тока поступает на детектор, где преобразуется в постоянное напряжение компенса­ции. Это напряжение через УПТ подается в опорную нагрузку и одновременно измеряется магнитоэлектрическим прибором. Сопротивления терморезисторов в результате изменения температуры опорной нагрузки выравниваются, баланс моста восстанавливается, а показание прибора оказывается пропорциональным измеряе­мому значению Рх. Таким образом, мы получаем прямоотсчетный калориметрический ваттметр с автоматической термобаланси­ровкой.

Основными достоинствами калориметрических ваттметров явля­ются исключительно широкий частотный диапазон, широкие преде­лы и высокая точность измерений, определяемая в основном по­грешностью измерения мощности замещения (напряжения компен­сации) и параметрами рабочей нагрузки, которые точно известны для каждого ваттметра. Поэтому на базе калориметрического ме­тода разработаны государственные специальные эталоны единицы мощности электромагнитных колебаний в коаксиальных и волноводных трактах, утвержденные ГОСТ 8.073—73, ГОСТ 8.102—73 и ГОСТ 8.277—78. Они обеспечивают воспроизведение ватта при СКО не более 0,15 % и неисключенной систематической погрешности, не превышающей 0,5 %. Недостатки калориметрических ваттметров: большая инерционность (время установления показаний может достигать и нескольких минут) и сложность в эксплуатации.

Болометрический (термисторный) метод

Болометрический (термисторный) метод основан на изменении сопротивления резистивного термочувствительного элемента, в ко­тором электромагнитная энергия превращается в тепловую. В диа­пазоне СВЧ применяют два вида термочувствительных элементов — болометры и термисторы (соответственно ваттметры называются болометрическими или термисторными). Рассмотрим основные ха­рактеристики их.

Болометр представляет собой проволоку диаметром ~ 1 мкм и длиной 0,8...1,2 мм (проволочные болометры) или пленку из пла­тины (палладия), нанесенную на подложку из стекла или слюды (пленочные болометры). Проволочные болометры запаивают в стеклянный вакуумный или заполненный инертным газом баллон, а пленочные болометры выполняют в виде специальной вставки.

Термисторы изготовляют из полупроводниковой массы в виде бусинки диаметром 0,2.„0,5 мм или цилиндра диаметром 0,2...0,3 мм и длиной 1...1.5 мм. Полупроводниковая масса состоит из порошко­образной смеси оксидов меди, марганца, кобальта, титана и др., спекаемой в определенной среде. В тело термистора ввариваются выводы из платины (платиноиридиевого сплава), а сам термистор может помещаться в стеклянный баллон или эксплуатироваться без него (безбалонные термисторы).

Основными характеристиками болометров и термисторов явля­ются сопротивление в рабочей точке Rt° при котором болометр (термистор) согласуется с СВЧ трактом, чувствительность S t° = Rt° /dP, тепловая постоянная и максимально допустимая мощ­ность рассеяния.

На рис. 4.6. представлены типичные зависимости Rt° (P) для болометров (рис. 4.6, а) и термисторов (рис. 4.6, б). Видно, что термистор изменяет свое сопротивление в более широких пределах, чем болометр. Это определяет более высокую чувствительность термистора (St° = 5... 100 Ом/мВт) по сравнению с болометром (St°=3…15 Ом/мВт) и облегчает согласование термистора с трактом.

Рис. 4.6. Рабочие характеристики термочувствительных элементов:

а —болометра; б — термистора.

В то же время проволочные болометры имеют значительно меньшую тепловую постоянную (10-3... 10-5с), чем термисторы (0,1 ... 1 с), и могут применяться для измерения как Р, так и Ри. Что касается пленочных болометров, то основное достоинство их — возможность расширения пределов измерения Р от 10 мВт (термисторы и прово­лочные болометры) до 1 Вт. Таким образом, в зависимости от кон­кретных требований ваттметры могут комплектоваться болометри­ческими или термисторными головками.

Рис. 4.7. Коаксиальная болометрическая (термисторная) головка:

а — устройство; б — эквивалентная схема.

Конструктивно головки представляют собой отрезки коаксиаль­ных или волноводных трактов со встроенными болометрами или термисторами. При этом важно разделить цепи питания болометра (термистора) по постоянному току (для включения в схему ИУ) и СВЧ (для подачи Рх). В коаксиальных головках это достигается с помощью высокочастотного дросселя и конструктивного конденса­тора (рис. 4.7, а). Дроссель (Др) представляет собой спираль Архи­меда, не нарушающую согласования головки с трактом подачи Рх, а конструктивный конденсатор Ск образован внешним проводником коаксиала и оконечной короткозамыкающей заглушкой. Болометр (термистор) конструктивно встроен в центральный проводник ко­аксиала, что облегчает согласование головки с трактом. Эквивалентная схе­ма головки (рис. 4.7, б) поясняет спо­соб разделения цепей питания.

В волноводных головках применя­ется переход от прямоугольного волно­вода к П-образному (рис. 4.8), чем достигается согласование головки с трактом в широком диапазоне частот. Конструктивный конденсатор Ск обра­зуется с помощью изоляционной про кладки в месте одного из выводов бо­лометра (термистора).

В качестве ИУ болометрических (термисторных) ваттметров приме­няют измерительные мосты. В простейшем случае это четы-рехплечий уравновешенный мост постоянного тока, в одно из плеч которого включен болометр (термистор). Как видно из рис. 4.9, мост является равноплечим, причем R выбираются из условия со­гласования болометра (термистора) с трактом.

Перед измерением мост балансируется с помощью потенциометра Ro, который регулирует ток питания моста I, изменяя при этом Rt° (см. рис. 4.6) до Rt° = R. Момент баланса фиксируется с по­мощью магнитоэлектрического индикатора, а по шкале амперметра отсчитывается значение 1%. Очевидно, что мощность, рассеиваемая в этом случае на болометре (термисторе), равна РТ = (I1 I1 R)/4.

Рис. 4.8. Волноводная боло­метрическая (термисторная) го­ловка.

Рис. 4.9. Простейшая схема ИУ болометрического (тер-мисторного) ваттметра.

После подачи Рх мост вновь балансируется уменьшением тока питания от значения I1 до значения I2 Очевидно,

откуда

(4.13)

Легко видеть, что при точном измерении значений I1 и I2 расчет Рх по формуле (4.13) также будет точным. Однако при малых Рх значения I1 и I2 очень близки, и точно различить их не удается. По­этому в практических схемах мостов измеряют величину ΔI= I1 - I2 , а искомое значение Рх определяют по следующей формуле, выте­кающей из (4.13):

Px =(R/4)*ΔI(2I1- ΔI) (4.14)

Из (4.14) видно, что при постоянных R и I1 шкала прибора, из­меряющего ΔI, может быть проградуирована в значениях Рх, и мы получаем прямоотсчетный ваттметр.

По другому принципу может осуществляться измерение Ри в болометрических ваттметрах. В процессе измерения под действием радиоимпульса болометр нагревается, сопротивление его изменяет­ся, и при постоянном токе питания напряжение на болометре будет иметь форму пилообразных видеоимпульсов. Если радиоимпульсы короче тепловой постоянной болометра, то амплитуда видеоимпуль­сов будет пропорциональна энергии радиоимпульсов. Эти видео­импульсы усиливаются, дифференцируются и подаются на импульс­ный вольтметр, шкала которого может быть проградуирована в значениях Ри. Такие ваттметры называются интегрально-дифференциальными.

Основными достоинствами болометрических и термисторных ваттметров являются широкий частотный диапазон, высокая чув­ствительность, позволяющая измерять значения Рх порядка единиц микроватт, малое время установления показаний и высокая точ­ность, обеспечиваемая параметрами головок и измерительных мо­стов. Наряду с калориметрическим этот метод также использован при создании государственных специальных эталонов единицы мощ­ности электромагнитных колебаний, утвержденных ГОСТ 8.073—73 и ГОСТ 8.047—80. К недостаткам ваттметров, существенно ограни­чивающим их применение, необходимо отнести малые пределы из­мерений и большой температурный дрейф, требующий применения специальных схем термокомпенсации.

Термоэлектрический метод

Термоэлектрический метод основан на преобразовании с по­мощью термопар энергии СВЧ в тепловую и измерении возникаю­щей термоЭДС ЕТ, пропорциональной рассеиваемой в термопаре СВЧ мощности. Таким образом, термопары одновременно выполняют (в отличие от сухого калориметра) функции согласованной нагрузки и термометра.

Термоэлектрический метод, как и болометрический, применим для измерения малых уровней мощности. Однако он имеет суще­ственное преимущество перед болометрическим: значение ЕТ прак­тически не зависит от температуры окружающей среды, и отпадает необходимость в специальных схемах термокомпенсации. Кроме того, термопары не требуют начального подогрева, имеют высокую чувствительность и совместно с простым ИУ позволяют реализовывать термоэлектрические ваттметры прямого преобразования.

Рис. 4.10. Эквивалентная схема термоэлектрического преобразова­теля с дифференциальным включением термопар.

Рис. 4.11. Амплитудная характери­стика термоэлектрического преобра­зователя.

Конструкция термоэлектрических головок коаксиального и волноводного типа в целом аналогична конструкции болометрических (см. рис. 4.7 и 4.8). Для повышения чувствительности термопары выполняют дифференциальными, причем по постоянному току вет­ви термопары соединяют последовательно, а по высокой частоте — параллельно. Как видно из эквивалентной схемы рис. 4.10, это до­стигается с помощью конструктивного конденсатора С2. Конденса­тор С1 (также конструктивный) позволяет развязать цепи посто­янного тока и СВЧ. Значения RТ1 и RТ2 выбирают из условия со­гласования головки. В основном применяют пленочные термопары (металлические пленки, напыленные на диэлектрические подлож­ки), причем наибольшее распространение получили термопары висмут — сурьма, копель — сурьма и хромель — копель.

Основной характеристикой термоэлектрического преобразова­теля является амплитудная характеристика ЕТХ), типичный вид которой представлен на рис. 4.11. Линейный участок характеристи­ки определяет пределы измерения Рх, причем максимальную линей­ность имеют характеристики дифференциальных термопар.

Поскольку выходным сигналом преобразователя является по­стоянное напряжение, ИУ термоэлектрических ваттметров пред­ставляет собой вольтметр постоянного тока, шкала которого про­градуирована в значениях Рх. В практических схемах ваттметров применяют как аналоговые, так и цифровые вольтметры. Дополни­тельным функциональным узлом ИУ является калибратор мощно­сти— стабилизированный генератор меандра частоты 20...50 кГц. С его помощью производится калибровка ваттметра перед началом работы и после смены преобразователя. Благодаря этому устра­няется разброс характеристик ЕТХ).

Основные достоинства и параметры термоэлектрических ватт­метров те же, что и у болометрических (термисторных). Дополни­тельным важным преимуществом, как уже отмечалось, является малая зависимость результатов измерений от температуры окру­жающей среды. Основной недостаток ваттметров — малые пределы измерений и малая устойчивость к перегрузкам.