
- •Раздел 1. Оптические методы анализа
- •1.1.2. Аппаратура и принадлежности для фотометрического анализа Колориметр фотоэлектрический концентрационный кфк-2
- •1. Описание прибора
- •2. Подготовка к работе
- •3. Порядок работы
- •3. 1. Измерение коэффициента пропускания
- •3. 2. Определение концентрации вещества в растворе
- •3.2.1. Выбор светофильтра.
- •3.2.2. Выбор кюветы.
- •3.2.3. Построение градуировочного графика для данного вещества.
- •3.2.4. Определение концентрации вещества в растворе.
- •Фотометр фотоэлектрический кфк-3-01
- •1. Описание прибора
- •1. Подготовка к работе
- •3. Порядок работы.
- •3. 1. Измерение коэффициента пропускания или оптической плотности
- •3. 2. Измерение концентрации вещества в растворе
- •3.2.1. Выбор длины волны.
- •3.2.2. Выбор кюветы.
- •3.2.3. Построение градуировочного графика и определение коэффициента факторизации.
- •3.2.4. Введение коэффициента факторизации f в память вычислительного блока.
- •3.2.5. Измерение концентрации вещества в растворе.
- •Спектрофотометр сф-26
- •1. Описание прибора
- •2. Подготовка к работе
- •3. Порядок работы
- •3. 1. Подготовка к измерению
- •3. 2. Измерение коэффициента пропускания
- •3. 3. Измерение коэффициента пропускания светофильтров и образцов в кюветах.
- •3. 4. Измерение в диапазоне показаний 0 — 10%
- •Лабораторная работа № 1. Тема: «Определение железа (III) в питьевой воде».
- •Ход определения
- •Дополнительные задания:
- •Определите концентрацию железа методом добавок, для чего постройте на миллиметровой бумаге калибровочный график как на рисунке 8.
- •1.1.3.Определение концентрации вещества методом добавок
- •Расчёт неизвестной концентрации по методу сравнения
- •Определение неизвестной концентрации графическим способом
- •Контрольные вопросы и задания
- •Лабораторная работа №2
- •Ход определении.
- •Нефелометрия и турбидиметрия.
- •1.2.1.Аналитические возможности и метрологические характеристики нефелометрии и турбидиметрии Аналитические возможности.
- •Метрологические характеристики.
- •1.2.2. Взаимодействие света со взвешенными частицами
- •1.2.3.Закон Рэлея
- •1.2.4. Приёмы нахождения неизвестной концентрации в нефелометрии и турбидиметрии
- •1.2.5. Приборы для нефелометрических и турбидиметрических измерений
- •Лабораторная работа №3 Тема: «Фототурбидиметрическое определение кальция».
- •Ход определения
- •Лабораторная работа № 4. Тема: «Определение сульфатов в питьевой воде».
- •Ход определения
- •Лабораторная работа № 5. Тема: «Определение хлоридов в питьевой воде»
- •Ход определения
- •Лабораторная работа работа №6 Тема: «Определение хлоридов в питьевой воде».
- •Ход определения.
- •1.3. Рефрактометрический метод анализа
- •1.3.1. Теоретические основы рефрактометрии
- •1.3.2 Аппаратура и принадлежности для рефрактометрии Рефрактометр Аббе nar-1t
- •1. Описание прибора
- •1. Окуляр.
- •12. Измерительная ручка
- •2. Калибровка прибора с дистиллированной водой
- •3.Измерение коэффициента преломления
- •Лабораторная работа №7 Тема: «Определение сахара в виноградном соке и сусле».
- •Ход определения.
- •Лабораторная работа №8 Тема: «Определение сахарозы в сладких творожных продукта»
- •Ход определения.
- •Лабораторная работа №9. Определение концентрации хлорида натрия в водном растворе
- •Ход определения
- •Лабораторная работа №10 Тема: «Определение лактозы в молоке и кисломолочных продуктах».
- •Ход определения
- •Объяснить относительно невысокую селективность рефрактометрического метода анализа.
- •Раздел 2. Электрохимические методы анализа
- •2.1.Потенциометрия
- •2.1.1.Теоретические основы потенциометрии
- •2.1.2. Электроды
- •2.1.3 Виды потенциометрического метода анализа
- •Раствора FeCl3 раствором SnCl2
- •Аппаратура и принадлежности для потенциометрического анализа Настольный рН-метр - рН 211
- •Описание прибора.
- •Калибровка прибора по одной точке.
- •Калибровка по двум точкам.
- •Порядок работы.
- •Анализатор жидкости многопараметрический экотест − 2000
- •Описание прибора.
- •Порядок работы.
- •2.1 Измерение рХ (рН) в режиме “рН-метр-иономер”
- •2.1.1 Ионометрические измерения без термокомпенсации
- •2.1.1.1 Выбор ионометрического канала
- •2.1.1.2 Градуировка ионометрического канала
- •Выбор режима
- •2.1.1.3 Просмотр предыдущих градуировок
- •Сl Заряд -
- •Выбор режима
- •2.1.1.4 Проведение измерений
- •Сl Заряд -
- •2.1.2 Ионометрические измерения с термокомпенсацией
- •2.1.2.1 Ввод координат изопотенциальной точки
- •2.1.2.2 Ввод значения температуры раствора
- •2.1.2.3 Проведение измерений
- •Лабораторная работа №11
- •Ход работы.
- •Лабораторная работа №12
- •Ход работы.
- •Лабораторная работа №13
- •1. Назначение.
- •2. Метод анализа.
- •3. Подготовка к выполнению измерений
- •4. Выполнение измерений.
- •5. Обработка результатов измерения.
- •6. Оформление результатов измерений.
- •2.2. Кондуктометрия
- •2.2.1. Теоретические основы кондуктометрии
- •2.2.2. Прямая кондуктометрия
- •2.2.3.Кондуктометрическое титрование
- •2.2.4. Аппаратура и принадлежности для кондуктометрического анализа Настольный кондуктометр hi 2300
- •Описание прибора
- •Калибровка электропроводности/общей минерализации
- •Порядок работы
- •Лабораторная работа №14 Тема: «Определение лимонной кислоты в плодово-ягодном сырье».
- •Ход определения
- •Лабораторная работа № 15. Тема: «Определение аминокислот (глицина, аланина, валина, лейцина, серина) в растворе».
- •Ход определения
- •Лабораторная работа № 16. Тема: «Определение общей жесткости воды».
- •Ход определения
- •Раздел 1. Оптические методы анализа…………………………………………….
- •1.1.Фотометрические методы анализа……………………………………………
- •Раздел 1. Электрохимические методы анализа……………………………………..
- •Мальевская Елена Владимировна Кудырко Татьяна Геннадьевна Лабораторный практикум по физико-химическим методам анализа
- •230028, Г. Гродно, ул. Терешковой, 28
- •230028, Г. Гродно, ул. Терешковой, 28
Лабораторная работа № 1. Тема: «Определение железа (III) в питьевой воде».
Сущность работы. При взаимодействии железа (III) с сульфосалициловой кислотой образуются комплексы, состав и окраска которых зависят от кислотности раствора. В кислой среде (рН 1,8 – 2,5) получают комплекс I фиолетового цвета (λмакс = 510 нм, ε = 1,8·103), в котором соотношение железо: сульфосалицилат = 1 : 1; в щелочной среде (рН 9 – 11,5) получают жёлтый комплекс (λмакс = 416 нм, ε = 5,8·103) с соотношением компонентов 1 : 2 (рис.7).
При рН > 12 комплекс II разрушается и выделяется гидроксид железа. Определению не мешают фосфаты, бораты, ацетаты. В присутствии Mg2+, Al3+, Mn2+ проводят реакцию в кислой среде.
Рис.7
Реактивы.
Сульфосалициловая кислота, раствор концентрацией 10 % (мас.).
С
Рис. 7
тандартный раствор железоаммонийных квасцов FeNH4(SO4)2 ∙ 12H2O: в мерной колбе вместимостью 1000 см3 растворяют в дистиллированной воде (0,8636 ± 0,0002) г квасцов, подкисляют серной кислотой до рН 2 (контроль по универсальной индикаторной бумаге), доводят водой до метки, перемешивают; 1 см3 приготовленного раствора содержит 0,1 мг Fe3+.Серная кислота, 0,5 моль/дм3 раствор.
Аммиак, раствор с концентрацией 10% (мас.).
Универсальная индикаторная бумага.
Посуда.
Колбы мерные вместимостью 50 см3 – 7 шт., 1000 см3 – 1 шт.
Пипетки градуированные вместимостью 1, 5 и 10 см3 – по 1 шт.
Пипетка Мора вместимостью 25 см3.
Аппаратура.
Фотоэлектроколориметр или спектрофотометр, кюветы с толщиной светопоглощающего слоя 1 см.
Аналитические весы.
Ход определения
Для построения градуировочного графика в 6 мерных колб градуированной пипеткой помещают последовательно 0; 2; 4; 6; 8 и 10 см3 стандартного раствора железоаммонийных квасцов. В каждую колбу добавляют по 3,0 см3 раствора сульфосалициловой кислоты и 1,0 см3 серной кислоты, доводят дистиллированной водой до метки, перемешивают. Получают серию окрашенных в красно-фиолетовый цвет растворов, содержащих 50 см3 соответственно 0; 0,2; 0,4; 0,6; 0,8 и 1,0 мг Fe3+.
Оптическую плотность растворов измеряют на спектрофотометре при длине волны 510 нм или на фотоэлектроколориметре при светофильтре № 5; контроль – раствор, содержащий все указанные реактивы, кроме Fe3+. Полученные данные оформляют в виде таблицы 1. По полученным данным строят градуировочный график в координатах: содержание Fe3+, мг/50 см3 – оптическая плотность раствора.
Таблица 1
№ |
Fe3+, мг/50 см3 |
А |
1 |
0 |
|
2 |
0,2 |
|
3 |
0,4 |
|
4 |
0,6 |
|
5 |
0,8 |
|
6 |
1,0 |
|
В мерную колбу вместимостью 50 см3 помещают 25 см3 анализируемой питьевой воды, добавляют 3,0 см3 раствора сульфосалициловой кислоты и 1,0 см3 серной кислоты, доводят дистиллированной водой до метки, перемешивают. Измеряют оптическую плотность полученного раствора в приведённых выше условиях, по градуировочному графику находят содержание Fe3+ в 50 см3 раствора, т.е. в 25 см3 анализируемой питьевой воды.
Содержание Fe3+ (Q, мг/дм3) рассчитывают по формуле
(6)
где q – масса Fe3+ в 25 см3 анализируемой питьевой воды, мг.
Полученные данные оформите в виде таблицы 2:
Таблица 2
№ раствора |
А |
Fe3+, мг/дм3 |
|
|
|
Методика применима для определения Fe3+ в присутствии Cu2+. Аналогично определяют Fe3+ в аммонийной среде, при этом вместо соляной кислоты добавляют раствор аммиака. Оптическую плотность окрашенных в жёлтый цвет растворов измеряют на спектрофотометре при длине воны 425 нм или на фотоэлектроколориметре при светофильтре № 2.