
- •Раздел 1. Оптические методы анализа
- •1.1.2. Аппаратура и принадлежности для фотометрического анализа Колориметр фотоэлектрический концентрационный кфк-2
- •1. Описание прибора
- •2. Подготовка к работе
- •3. Порядок работы
- •3. 1. Измерение коэффициента пропускания
- •3. 2. Определение концентрации вещества в растворе
- •3.2.1. Выбор светофильтра.
- •3.2.2. Выбор кюветы.
- •3.2.3. Построение градуировочного графика для данного вещества.
- •3.2.4. Определение концентрации вещества в растворе.
- •Фотометр фотоэлектрический кфк-3-01
- •1. Описание прибора
- •1. Подготовка к работе
- •3. Порядок работы.
- •3. 1. Измерение коэффициента пропускания или оптической плотности
- •3. 2. Измерение концентрации вещества в растворе
- •3.2.1. Выбор длины волны.
- •3.2.2. Выбор кюветы.
- •3.2.3. Построение градуировочного графика и определение коэффициента факторизации.
- •3.2.4. Введение коэффициента факторизации f в память вычислительного блока.
- •3.2.5. Измерение концентрации вещества в растворе.
- •Спектрофотометр сф-26
- •1. Описание прибора
- •2. Подготовка к работе
- •3. Порядок работы
- •3. 1. Подготовка к измерению
- •3. 2. Измерение коэффициента пропускания
- •3. 3. Измерение коэффициента пропускания светофильтров и образцов в кюветах.
- •3. 4. Измерение в диапазоне показаний 0 — 10%
- •Лабораторная работа № 1. Тема: «Определение железа (III) в питьевой воде».
- •Ход определения
- •Дополнительные задания:
- •Определите концентрацию железа методом добавок, для чего постройте на миллиметровой бумаге калибровочный график как на рисунке 8.
- •1.1.3.Определение концентрации вещества методом добавок
- •Расчёт неизвестной концентрации по методу сравнения
- •Определение неизвестной концентрации графическим способом
- •Контрольные вопросы и задания
- •Лабораторная работа №2
- •Ход определении.
- •Нефелометрия и турбидиметрия.
- •1.2.1.Аналитические возможности и метрологические характеристики нефелометрии и турбидиметрии Аналитические возможности.
- •Метрологические характеристики.
- •1.2.2. Взаимодействие света со взвешенными частицами
- •1.2.3.Закон Рэлея
- •1.2.4. Приёмы нахождения неизвестной концентрации в нефелометрии и турбидиметрии
- •1.2.5. Приборы для нефелометрических и турбидиметрических измерений
- •Лабораторная работа №3 Тема: «Фототурбидиметрическое определение кальция».
- •Ход определения
- •Лабораторная работа № 4. Тема: «Определение сульфатов в питьевой воде».
- •Ход определения
- •Лабораторная работа № 5. Тема: «Определение хлоридов в питьевой воде»
- •Ход определения
- •Лабораторная работа работа №6 Тема: «Определение хлоридов в питьевой воде».
- •Ход определения.
- •1.3. Рефрактометрический метод анализа
- •1.3.1. Теоретические основы рефрактометрии
- •1.3.2 Аппаратура и принадлежности для рефрактометрии Рефрактометр Аббе nar-1t
- •1. Описание прибора
- •1. Окуляр.
- •12. Измерительная ручка
- •2. Калибровка прибора с дистиллированной водой
- •3.Измерение коэффициента преломления
- •Лабораторная работа №7 Тема: «Определение сахара в виноградном соке и сусле».
- •Ход определения.
- •Лабораторная работа №8 Тема: «Определение сахарозы в сладких творожных продукта»
- •Ход определения.
- •Лабораторная работа №9. Определение концентрации хлорида натрия в водном растворе
- •Ход определения
- •Лабораторная работа №10 Тема: «Определение лактозы в молоке и кисломолочных продуктах».
- •Ход определения
- •Объяснить относительно невысокую селективность рефрактометрического метода анализа.
- •Раздел 2. Электрохимические методы анализа
- •2.1.Потенциометрия
- •2.1.1.Теоретические основы потенциометрии
- •2.1.2. Электроды
- •2.1.3 Виды потенциометрического метода анализа
- •Раствора FeCl3 раствором SnCl2
- •Аппаратура и принадлежности для потенциометрического анализа Настольный рН-метр - рН 211
- •Описание прибора.
- •Калибровка прибора по одной точке.
- •Калибровка по двум точкам.
- •Порядок работы.
- •Анализатор жидкости многопараметрический экотест − 2000
- •Описание прибора.
- •Порядок работы.
- •2.1 Измерение рХ (рН) в режиме “рН-метр-иономер”
- •2.1.1 Ионометрические измерения без термокомпенсации
- •2.1.1.1 Выбор ионометрического канала
- •2.1.1.2 Градуировка ионометрического канала
- •Выбор режима
- •2.1.1.3 Просмотр предыдущих градуировок
- •Сl Заряд -
- •Выбор режима
- •2.1.1.4 Проведение измерений
- •Сl Заряд -
- •2.1.2 Ионометрические измерения с термокомпенсацией
- •2.1.2.1 Ввод координат изопотенциальной точки
- •2.1.2.2 Ввод значения температуры раствора
- •2.1.2.3 Проведение измерений
- •Лабораторная работа №11
- •Ход работы.
- •Лабораторная работа №12
- •Ход работы.
- •Лабораторная работа №13
- •1. Назначение.
- •2. Метод анализа.
- •3. Подготовка к выполнению измерений
- •4. Выполнение измерений.
- •5. Обработка результатов измерения.
- •6. Оформление результатов измерений.
- •2.2. Кондуктометрия
- •2.2.1. Теоретические основы кондуктометрии
- •2.2.2. Прямая кондуктометрия
- •2.2.3.Кондуктометрическое титрование
- •2.2.4. Аппаратура и принадлежности для кондуктометрического анализа Настольный кондуктометр hi 2300
- •Описание прибора
- •Калибровка электропроводности/общей минерализации
- •Порядок работы
- •Лабораторная работа №14 Тема: «Определение лимонной кислоты в плодово-ягодном сырье».
- •Ход определения
- •Лабораторная работа № 15. Тема: «Определение аминокислот (глицина, аланина, валина, лейцина, серина) в растворе».
- •Ход определения
- •Лабораторная работа № 16. Тема: «Определение общей жесткости воды».
- •Ход определения
- •Раздел 1. Оптические методы анализа…………………………………………….
- •1.1.Фотометрические методы анализа……………………………………………
- •Раздел 1. Электрохимические методы анализа……………………………………..
- •Мальевская Елена Владимировна Кудырко Татьяна Геннадьевна Лабораторный практикум по физико-химическим методам анализа
- •230028, Г. Гродно, ул. Терешковой, 28
- •230028, Г. Гродно, ул. Терешковой, 28
3. 2. Измерение концентрации вещества в растворе
Для измерения концентрации вещества в растворе необходимо предварительно выполнить ряд подготовительных операций в следующей последовательности:
– выбор длины волны;
– выбор кюветы;
– построение градуировочного графика для данного вещества и определение коэффициента факторизации F;
– введение коэффициента F в память вычислительного блока;
– измерение концентрации вещества в растворе.
3.2.1. Выбор длины волны.
Для достижения наименьшей погрешности в определении концентрации следует правильно выбрать длину волны, на которой будет выполняться измерение. Для этого по методике п. п. 3. 1. 1 – 3. 1. 5 измерить оптические плотности исследуемого раствора в диапазоне длин волн поглощения излучения данным раствором.
Построить график зависимости оптической плотности данного раствора от длины волны излучения, откладывая по горизонтальной оси значения длин волн в нм, по вертикальной – измеренные значения оптической плотности А.
Выбрать такой участок, где выполняются следующие условия:
оптическая плотность имеет максимальную величину;
ход кривой примерно параллелен горизонтальной оси, т.е. оптическая плотность слабо зависит от длины волны.
Длина волны, соответствующая этому участку, выбирается для измерения. Если второе условие не выполняется, то рабочая длина волны выбирается по первому условию.
3.2.2. Выбор кюветы.
Как указывалось выше, абсолютная погрешность измерения коэффициента пропускания не превышает 0,5%. Относительная погрешность измерения оптической плотности раствора будет различной и достигает минимума при значении оптической плотности 0,4. Поэтому при работе на фотометре рекомендуется путем соответствующего выбора длины кювет работать вблизи указанного значения оптической плотности, например, в пределах от 0,3 до 0,6.
3.2.3. Построение градуировочного графика и определение коэффициента факторизации.
Построение градуировочного графика проводят следующим образом. Готовят ряд растворов данного вещества с известными концентрациями, охватывающими область возможных изменений концентраций этого вещества в исследуемом растворе. Измеряют оптические плотности всех растворов и строят градуировочный график, откладывая по горизонтальной оси известные концентрации, а по вертикальной – соответствующие им значения оптической плотности. Следует убедиться в том, что зависимость концентрации от оптической плотности – линейная, т. е. выражается на графике прямой линией.
Рассчитывают по графику коэффициент факторизации F. Для этого снимают значение концентрации С для средней части графика и соответствующую этой концентрации оптическую плотность А. Тогда
(3)
Если при построении градуировочного графика будет установлено, что зависимость между оптической плотностью и концентрацией не линейная, коэффициент факторизации F определять не требуется. Определение концентрации в этом случае проводить по градуировочному графику.