
- •Раздел 1. Оптические методы анализа
- •1.1.2. Аппаратура и принадлежности для фотометрического анализа Колориметр фотоэлектрический концентрационный кфк-2
- •1. Описание прибора
- •2. Подготовка к работе
- •3. Порядок работы
- •3. 1. Измерение коэффициента пропускания
- •3. 2. Определение концентрации вещества в растворе
- •3.2.1. Выбор светофильтра.
- •3.2.2. Выбор кюветы.
- •3.2.3. Построение градуировочного графика для данного вещества.
- •3.2.4. Определение концентрации вещества в растворе.
- •Фотометр фотоэлектрический кфк-3-01
- •1. Описание прибора
- •1. Подготовка к работе
- •3. Порядок работы.
- •3. 1. Измерение коэффициента пропускания или оптической плотности
- •3. 2. Измерение концентрации вещества в растворе
- •3.2.1. Выбор длины волны.
- •3.2.2. Выбор кюветы.
- •3.2.3. Построение градуировочного графика и определение коэффициента факторизации.
- •3.2.4. Введение коэффициента факторизации f в память вычислительного блока.
- •3.2.5. Измерение концентрации вещества в растворе.
- •Спектрофотометр сф-26
- •1. Описание прибора
- •2. Подготовка к работе
- •3. Порядок работы
- •3. 1. Подготовка к измерению
- •3. 2. Измерение коэффициента пропускания
- •3. 3. Измерение коэффициента пропускания светофильтров и образцов в кюветах.
- •3. 4. Измерение в диапазоне показаний 0 — 10%
- •Лабораторная работа № 1. Тема: «Определение железа (III) в питьевой воде».
- •Ход определения
- •Дополнительные задания:
- •Определите концентрацию железа методом добавок, для чего постройте на миллиметровой бумаге калибровочный график как на рисунке 8.
- •1.1.3.Определение концентрации вещества методом добавок
- •Расчёт неизвестной концентрации по методу сравнения
- •Определение неизвестной концентрации графическим способом
- •Контрольные вопросы и задания
- •Лабораторная работа №2
- •Ход определении.
- •Нефелометрия и турбидиметрия.
- •1.2.1.Аналитические возможности и метрологические характеристики нефелометрии и турбидиметрии Аналитические возможности.
- •Метрологические характеристики.
- •1.2.2. Взаимодействие света со взвешенными частицами
- •1.2.3.Закон Рэлея
- •1.2.4. Приёмы нахождения неизвестной концентрации в нефелометрии и турбидиметрии
- •1.2.5. Приборы для нефелометрических и турбидиметрических измерений
- •Лабораторная работа №3 Тема: «Фототурбидиметрическое определение кальция».
- •Ход определения
- •Лабораторная работа № 4. Тема: «Определение сульфатов в питьевой воде».
- •Ход определения
- •Лабораторная работа № 5. Тема: «Определение хлоридов в питьевой воде»
- •Ход определения
- •Лабораторная работа работа №6 Тема: «Определение хлоридов в питьевой воде».
- •Ход определения.
- •1.3. Рефрактометрический метод анализа
- •1.3.1. Теоретические основы рефрактометрии
- •1.3.2 Аппаратура и принадлежности для рефрактометрии Рефрактометр Аббе nar-1t
- •1. Описание прибора
- •1. Окуляр.
- •12. Измерительная ручка
- •2. Калибровка прибора с дистиллированной водой
- •3.Измерение коэффициента преломления
- •Лабораторная работа №7 Тема: «Определение сахара в виноградном соке и сусле».
- •Ход определения.
- •Лабораторная работа №8 Тема: «Определение сахарозы в сладких творожных продукта»
- •Ход определения.
- •Лабораторная работа №9. Определение концентрации хлорида натрия в водном растворе
- •Ход определения
- •Лабораторная работа №10 Тема: «Определение лактозы в молоке и кисломолочных продуктах».
- •Ход определения
- •Объяснить относительно невысокую селективность рефрактометрического метода анализа.
- •Раздел 2. Электрохимические методы анализа
- •2.1.Потенциометрия
- •2.1.1.Теоретические основы потенциометрии
- •2.1.2. Электроды
- •2.1.3 Виды потенциометрического метода анализа
- •Раствора FeCl3 раствором SnCl2
- •Аппаратура и принадлежности для потенциометрического анализа Настольный рН-метр - рН 211
- •Описание прибора.
- •Калибровка прибора по одной точке.
- •Калибровка по двум точкам.
- •Порядок работы.
- •Анализатор жидкости многопараметрический экотест − 2000
- •Описание прибора.
- •Порядок работы.
- •2.1 Измерение рХ (рН) в режиме “рН-метр-иономер”
- •2.1.1 Ионометрические измерения без термокомпенсации
- •2.1.1.1 Выбор ионометрического канала
- •2.1.1.2 Градуировка ионометрического канала
- •Выбор режима
- •2.1.1.3 Просмотр предыдущих градуировок
- •Сl Заряд -
- •Выбор режима
- •2.1.1.4 Проведение измерений
- •Сl Заряд -
- •2.1.2 Ионометрические измерения с термокомпенсацией
- •2.1.2.1 Ввод координат изопотенциальной точки
- •2.1.2.2 Ввод значения температуры раствора
- •2.1.2.3 Проведение измерений
- •Лабораторная работа №11
- •Ход работы.
- •Лабораторная работа №12
- •Ход работы.
- •Лабораторная работа №13
- •1. Назначение.
- •2. Метод анализа.
- •3. Подготовка к выполнению измерений
- •4. Выполнение измерений.
- •5. Обработка результатов измерения.
- •6. Оформление результатов измерений.
- •2.2. Кондуктометрия
- •2.2.1. Теоретические основы кондуктометрии
- •2.2.2. Прямая кондуктометрия
- •2.2.3.Кондуктометрическое титрование
- •2.2.4. Аппаратура и принадлежности для кондуктометрического анализа Настольный кондуктометр hi 2300
- •Описание прибора
- •Калибровка электропроводности/общей минерализации
- •Порядок работы
- •Лабораторная работа №14 Тема: «Определение лимонной кислоты в плодово-ягодном сырье».
- •Ход определения
- •Лабораторная работа № 15. Тема: «Определение аминокислот (глицина, аланина, валина, лейцина, серина) в растворе».
- •Ход определения
- •Лабораторная работа № 16. Тема: «Определение общей жесткости воды».
- •Ход определения
- •Раздел 1. Оптические методы анализа…………………………………………….
- •1.1.Фотометрические методы анализа……………………………………………
- •Раздел 1. Электрохимические методы анализа……………………………………..
- •Мальевская Елена Владимировна Кудырко Татьяна Геннадьевна Лабораторный практикум по физико-химическим методам анализа
- •230028, Г. Гродно, ул. Терешковой, 28
- •230028, Г. Гродно, ул. Терешковой, 28
Нефелометрия и турбидиметрия.
Метод нефелометрии предложен в 1912г. учёным Ф. Кобером.
Сущность нефелометрического и турбидиметрического методов анализа заключается в следующем. Определяемый компонент переводят в малорастворимое соединение (МРС), которое может находиться в виде взвеси. Затем измеряют интенсивность света, рассеянного суспензией (нефелометрия') или прошедшего через неё (турбидиметрия) (рис. 9).
Рис. 9. Принципиальная схема световых потоков при нефелометрических и турбидиметрических измерениях
При этом интенсивность светового потока меняется, а длина волны излучения остаётся постоянной.
В этих методах используют селективные реакции осаждения, к продукту которых предъявляются следующие требования:
• продукт реакции должен быть практически нерастворим;
• продукт реакции должен находиться в растворе в виде суспензии, а не в виде осадка.
1.2.1.Аналитические возможности и метрологические характеристики нефелометрии и турбидиметрии Аналитические возможности.
С помощью методов нефелометрии и турбидиметрии можно определять малые концентрации (< 100 мг/л) многих ионов, которые образуют МРС:
1. галогенид-ионы Г- в виде AgГ;
2. SO42- в виде BaSO4;
3. анионы, которые образуют белые или бесцветные осадки (С2О42-, РО43- );
4. реже - катионы, которые образуют белые или бесцветные осадки (Ag+, Ва2+, Zn2+, Mg2+, РЬ2+, Ca2+).
Эти методы выбирают для проведения анализа в двух случаях:
1. если вещество невозможно определить фотометрически, т. к. для него неизвестны цветные реакции (например, SO42-, Сl-);
2. если осаждение МРС оказывается более чувствительным, чем позволяют существующие фотометрические методы.
Применение методов нефелометрии к турбидиметрии ограничено,
т. к. на аналитический сигнал сильно влияет размер частиц суспензии и их форма. Например, мелкие кристаллы BaSО4 могут принимать разную форму, что влияет на рассеяние света.
Метрологические характеристики.
1. Невысокая точность - от 2-5 % до 10-15 %.
2. Высокая чувствительность - главное достоинство этих методов. Нефелометрия является более чувствительным методом, чем тур- бидиметрия, поскольку рассеянный свет наблюдают на тёмном фоне. Например, при определении SO42~ в виде BaSO4 предел оп ределения составляет Cmin = 0,01—0,1 мг/л.
3. Простота выполнения и оборудования.
4. Низкая воспроизводимость результатов, которая обусловлена тем, что трудно добиться, чтобы размер и форма частиц воспроизводились.
1.2.2. Взаимодействие света со взвешенными частицами
Основным явлением, которое имеет место при взаимодействии света со взвешенными частицами, является рассеяние (поглощение света практически не происходит).
Рассеяние – это случайное изменение направления распространения света
Рассеяние зависит от следующих факторов:
длины волны падающего света: чем больше λ, тем меньше IР;
размера и формы частиц:
2.1. для небольших частиц (r ≤ О,1λ.) наблюдается рэлеевское .рассеяние, в этом случае Iр ~ 1 / λ4;
2.2. для более крупных частиц (0,lλ < r ≤ 2/3λ) наблюдается рассеяние Тиндаля, в этом случае степень при λ уменьшается;
2.3. для очень больших частиц (r > λ) наблюдается отражение света которое не зависит от λ.
На рис. 9. показана, зависимость интенсивности рассеянного света от размера частиц BaSO4.
Размер частиц, мкм
Рис. 10. Зависимость интенсивности рассеянного света от размера частиц BaSO4