
- •Раздел 1. Оптические методы анализа
- •1.1.2. Аппаратура и принадлежности для фотометрического анализа Колориметр фотоэлектрический концентрационный кфк-2
- •1. Описание прибора
- •2. Подготовка к работе
- •3. Порядок работы
- •3. 1. Измерение коэффициента пропускания
- •3. 2. Определение концентрации вещества в растворе
- •3.2.1. Выбор светофильтра.
- •3.2.2. Выбор кюветы.
- •3.2.3. Построение градуировочного графика для данного вещества.
- •3.2.4. Определение концентрации вещества в растворе.
- •Фотометр фотоэлектрический кфк-3-01
- •1. Описание прибора
- •1. Подготовка к работе
- •3. Порядок работы.
- •3. 1. Измерение коэффициента пропускания или оптической плотности
- •3. 2. Измерение концентрации вещества в растворе
- •3.2.1. Выбор длины волны.
- •3.2.2. Выбор кюветы.
- •3.2.3. Построение градуировочного графика и определение коэффициента факторизации.
- •3.2.4. Введение коэффициента факторизации f в память вычислительного блока.
- •3.2.5. Измерение концентрации вещества в растворе.
- •Спектрофотометр сф-26
- •1. Описание прибора
- •2. Подготовка к работе
- •3. Порядок работы
- •3. 1. Подготовка к измерению
- •3. 2. Измерение коэффициента пропускания
- •3. 3. Измерение коэффициента пропускания светофильтров и образцов в кюветах.
- •3. 4. Измерение в диапазоне показаний 0 — 10%
- •Лабораторная работа № 1. Тема: «Определение железа (III) в питьевой воде».
- •Ход определения
- •Дополнительные задания:
- •Определите концентрацию железа методом добавок, для чего постройте на миллиметровой бумаге калибровочный график как на рисунке 8.
- •1.1.3.Определение концентрации вещества методом добавок
- •Расчёт неизвестной концентрации по методу сравнения
- •Определение неизвестной концентрации графическим способом
- •Контрольные вопросы и задания
- •Лабораторная работа №2
- •Ход определении.
- •Нефелометрия и турбидиметрия.
- •1.2.1.Аналитические возможности и метрологические характеристики нефелометрии и турбидиметрии Аналитические возможности.
- •Метрологические характеристики.
- •1.2.2. Взаимодействие света со взвешенными частицами
- •1.2.3.Закон Рэлея
- •1.2.4. Приёмы нахождения неизвестной концентрации в нефелометрии и турбидиметрии
- •1.2.5. Приборы для нефелометрических и турбидиметрических измерений
- •Лабораторная работа №3 Тема: «Фототурбидиметрическое определение кальция».
- •Ход определения
- •Лабораторная работа № 4. Тема: «Определение сульфатов в питьевой воде».
- •Ход определения
- •Лабораторная работа № 5. Тема: «Определение хлоридов в питьевой воде»
- •Ход определения
- •Лабораторная работа работа №6 Тема: «Определение хлоридов в питьевой воде».
- •Ход определения.
- •1.3. Рефрактометрический метод анализа
- •1.3.1. Теоретические основы рефрактометрии
- •1.3.2 Аппаратура и принадлежности для рефрактометрии Рефрактометр Аббе nar-1t
- •1. Описание прибора
- •1. Окуляр.
- •12. Измерительная ручка
- •2. Калибровка прибора с дистиллированной водой
- •3.Измерение коэффициента преломления
- •Лабораторная работа №7 Тема: «Определение сахара в виноградном соке и сусле».
- •Ход определения.
- •Лабораторная работа №8 Тема: «Определение сахарозы в сладких творожных продукта»
- •Ход определения.
- •Лабораторная работа №9. Определение концентрации хлорида натрия в водном растворе
- •Ход определения
- •Лабораторная работа №10 Тема: «Определение лактозы в молоке и кисломолочных продуктах».
- •Ход определения
- •Объяснить относительно невысокую селективность рефрактометрического метода анализа.
- •Раздел 2. Электрохимические методы анализа
- •2.1.Потенциометрия
- •2.1.1.Теоретические основы потенциометрии
- •2.1.2. Электроды
- •2.1.3 Виды потенциометрического метода анализа
- •Раствора FeCl3 раствором SnCl2
- •Аппаратура и принадлежности для потенциометрического анализа Настольный рН-метр - рН 211
- •Описание прибора.
- •Калибровка прибора по одной точке.
- •Калибровка по двум точкам.
- •Порядок работы.
- •Анализатор жидкости многопараметрический экотест − 2000
- •Описание прибора.
- •Порядок работы.
- •2.1 Измерение рХ (рН) в режиме “рН-метр-иономер”
- •2.1.1 Ионометрические измерения без термокомпенсации
- •2.1.1.1 Выбор ионометрического канала
- •2.1.1.2 Градуировка ионометрического канала
- •Выбор режима
- •2.1.1.3 Просмотр предыдущих градуировок
- •Сl Заряд -
- •Выбор режима
- •2.1.1.4 Проведение измерений
- •Сl Заряд -
- •2.1.2 Ионометрические измерения с термокомпенсацией
- •2.1.2.1 Ввод координат изопотенциальной точки
- •2.1.2.2 Ввод значения температуры раствора
- •2.1.2.3 Проведение измерений
- •Лабораторная работа №11
- •Ход работы.
- •Лабораторная работа №12
- •Ход работы.
- •Лабораторная работа №13
- •1. Назначение.
- •2. Метод анализа.
- •3. Подготовка к выполнению измерений
- •4. Выполнение измерений.
- •5. Обработка результатов измерения.
- •6. Оформление результатов измерений.
- •2.2. Кондуктометрия
- •2.2.1. Теоретические основы кондуктометрии
- •2.2.2. Прямая кондуктометрия
- •2.2.3.Кондуктометрическое титрование
- •2.2.4. Аппаратура и принадлежности для кондуктометрического анализа Настольный кондуктометр hi 2300
- •Описание прибора
- •Калибровка электропроводности/общей минерализации
- •Порядок работы
- •Лабораторная работа №14 Тема: «Определение лимонной кислоты в плодово-ягодном сырье».
- •Ход определения
- •Лабораторная работа № 15. Тема: «Определение аминокислот (глицина, аланина, валина, лейцина, серина) в растворе».
- •Ход определения
- •Лабораторная работа № 16. Тема: «Определение общей жесткости воды».
- •Ход определения
- •Раздел 1. Оптические методы анализа…………………………………………….
- •1.1.Фотометрические методы анализа……………………………………………
- •Раздел 1. Электрохимические методы анализа……………………………………..
- •Мальевская Елена Владимировна Кудырко Татьяна Геннадьевна Лабораторный практикум по физико-химическим методам анализа
- •230028, Г. Гродно, ул. Терешковой, 28
- •230028, Г. Гродно, ул. Терешковой, 28
Дополнительные задания:
Определите концентрацию железа методом добавок, для чего постройте на миллиметровой бумаге калибровочный график как на рисунке 8.
Найдите двумя методами концентрацию железа в исследуемом растворе.
Какой метод вы считаете наиболее удобным и точным?
1.1.3.Определение концентрации вещества методом добавок
Метод добавок представляет собой разновидность метода сравнения. Определение концентрации раствора этим методом основано на сравнении оптической плотности исследуемого раствора и того же раствора с добавкой известного количества определяемого вещества. Метод добавок обычно применяют либо для упрощения работы, либо для устранения мешающего влияния посторонних примесей. Этот метод позволяет создать одинаковые условия для фотометрирования исследуемого и стандартного (с добавкой) окрашенных растворов, поэтому его целесообразно применять для определения малых количеств различных элементов в присутствии больших количеств посторонних веществ при анализе солевых растворов.
Расчёт неизвестной концентрации по методу сравнения
При соблюдении основного закона светопоглощения и постоянной толщине слоя, отношение оптических плотностей исследуемого раствора и исследуемого раствора и добавкой будет равно отношению их концентраций, т. е.:
(7)
откуда
(8)
где Сх – неизвестная концентрация определяемого вещества в исследуемом окрашенном растворе; Са – концентрация добавки в исследуемом растворе (из расчёта только добавленного количества); Аx – оптическая плотность исследуемого раствора; Аx+a – оптическая плотность исследуемого раствора с добавкой.
Учитывая разбавление исследуемого раствора и выражая концентрацию добавки в нём через Сдоб, находим количество определяемого вещества q (в мг):
(9)
где:
Vдоб – объём раствора добавки, мл;
V1 – объём аликвотной части исследуемого раствора, взятого для приготовления окрашенного раствора, мл;
Vx+a – объём окрашенного исследуемого раствора с добавкой, мл;
Vx - объём окрашенного исследуемого раствора без добавки, мл;
Vобщ – общий объём исследуемого раствора, мл.
Если исследуемый окрашенный раствор и раствор с добавкой приготавливают в одинаковых мерных колбах, то их объёмы одинаковы, следовательно,
или
(10,
а - б)
где qдоб – количество добавленного вещества, мг, (Аx+a - Аx) должна быть не менее 0,1.
Определение неизвестной концентрации графическим способом
П
ри
определении неизвестной концентрации
графическим способом (рис.8) на оси
ординат откладывают значения оптической
плотности исследуемого раствора Аx,
а на оси абсцисс из точек Са1
и Са2,
отвечающих концентрациям добавленного
вещества в растворе, восстанавливают
перпендикуляры. На этих перпендикулярах
откладывают соответствующие им значения
оптической плотности Аx+a1;
Аx+a2
растворов с добавками а1
и а2.
Через полученные три точки Аx,
Аx+a1
и Аx+a2
проводят прямую линию до пересечения
её с продолжением оси абсцисс в точке
Сx.
Абсолютное значение отрезка 0Сх
выражает неизвестную концентрацию
исследуемого раствора.