- •Министерство образования и науки российской федерации
- •Введение
- •Лекция 1
- •Раздел 1 Техническая термодинамика. Основные понятия и определения
- •Термодинамическая система
- •Термодинамические параметры состояния
- •Уравнение состояния
- •Термодинамический процесс
- •Теплоемкость газов
- •Лекция 2 Раздел 2 Первый закон термодинамики Смеси идеальных газов
- •Аналитическое выражение первого закона термодинамики
- •Лекция 3 Внутренняя энергия
- •Работа расширения
- •Теплота
- •Энтальпия
- •Энтропия
- •Лекция 4
- •Раздел 3. Второй закон термодинамики Общая формулировка второго закона термодинамики
- •Обратный цикл Карно
- •Изменение энтропии в неравновесных процессах
- •Лекция 5
- •Раздел 4. Термодинамические процессы Термодинамические процессы идеальных газов в закрытых системах
- •Так как для политропы в соответствии с (5.1)
- •Эксергия
- •Лекция 6 Термодинамические процессы реальных газов
- •Уравнение состояния реальных газов
- •Лекция 7
- •Раздел 5. Термодинамика потока. Истечение жидкостей, паров и газов Уравнение первого закона термодинамики для потока
- •Истечение из суживающегося сопла
- •Основные закономерности течения газа в соплах и диффузорах
- •Разделив уравнение на pv, найдем
- •Расчет процесса истечения с помощью h,s-диаграммы
- •Дросселирование газов и паров
- •Лекция 8 Раздел 6. Процессы и циклы энергетических установок Термодинамическая эффективность циклов теплосиловых установок
- •Лекция 9 Циклы поршневых двигателей внутреннего сгорания
- •Циклы газотурбинных установок
- •Циклы паротурбинных установок
- •Цикл Ренкина на перегретом паре
- •Термический кпд цикла
- •Общая характеристика холодильных установок
- •Цикл паровой компрессионной холодильной установки
- •Лекция 9
- •Раздел 7. Теория теплообмена
- •Основные понятия и определения
- •Лекция 10
- •Раздел 8. Теплопроводность Теория теплопроводности Закон Фурье
- •О tднослойная плоская стенка
- •Многослойная плоская стенка
- •Лекция 11 Теплопроводность при стационарном режиме в однослойной и многослойной стенках различной конфигурации. Однородная цилиндрическая стенка
- •Многослойная цилиндрическая стенка
- •ЛекцИя 12
- •Раздел 9. Теплопередача
- •Плоская стенка
- •Цилиндрическая стенка
- •Интенсификация теплопередачи
- •Тепловая изоляция
- •ЛекцИя 13
- •Расчетные уравнения
- •Лекция 14
- •Раздел 10. Конвективный теплообмен (кто) Конвективный теплообмен (теплоотдача) Основной закон конвективного теплообмена
- •Пограничный слой
- •Числа подобия
- •Лекция 14 Основы массообмена
- •Числа подобия конвективного массообмена
- •Частные случаи конвективного теплообмена Поперечное обтекание одиночной трубы и пучка труб
- •Лекция 16
- •Раздел 11. Теплообмен излучением Описание процесса излучения. Основные определения
- •Теплообмен излучением системы тел в прозрачной среде
- •Перенос лучистой энергии в поглощающей и излучающей среде
- •Лекция 14 лекция 15 Термодинамический анализ топливосжигающих устройств
- •Полезная тепловая нагрузка печи
- •Расчет процесса горения топлива в печи
- •Тепловой баланс печи. Коэффициент полезного действия. Расход топлива
- •Лекция 16 Котельные установки. Общие сведения
- •Устройство парового котла
- •Тепловой баланс парового котла. Коэффициент полезного действия
- •Лекция 17 Состав и основные характеристики жидкого топлива
- •Состав и основные характеристики газообразного топлива
- •Теплота сгорания топлива
- •Количество воздуха, необходимого для горения. Теплота “сгорания” воздуха
- •Объемы и состав продуктов сгорания
- •Лекция 18 Вторичные энергоресурсы Классификация вэр
- •Установки для внутреннего теплоиспользования
- •Котлы-утилизаторы
- •Список использованных источников
Тепловой баланс печи. Коэффициент полезного действия. Расход топлива
Уравнение теплового баланса печи составляется для 1 кг жидкого или 1 м3 газообразного топлива, при этом составляющие уравнения измерены в кДж/кг или кДж/ м3 соответственно.
![]()
где
- располагаемая теплота, т.е. теплота,
вносимая в трубчатую печь при сжигании
1 кг жидкого или 1 м3
газового
топлива;
-
полезно используемая теплота в печи;
-
потери теплоты с уходящими продуктами
сгорания;
- потери теплоты
от химической неполноты сгорания;
-
потери теплоты от механической неполноты
сгорания;
-
потери теплоты в окружающую среду через
ограждения печи (стены, под и т.д.).
Располагаемая теплота
![]()
![]()
где
-
низшая теплота сгорания;
-
физическая теплота используемого
жидкого или твердого топлива для
газа 0. т
ф » 0);
Q в - теплота воздуха, подаваемого в печь, если воздух предварительно подогревается до печи;
- теплота форсуночного
пара.
![]()
где Ст - теплоемкость топлива; принять Ст = 1,9 кДж/(кгК) (для жидкого топлива);
-
температура топлива, °С.
![]()
где Нв - энтальпия нагретого воздуха на входе в печь, кДж/кг.
![]()
где
- расход пара для распыливания 1 кг
жидкого топлива;
принимается
0,3...0,5 кг пара/кг топл.;
- энтальпия пара,
поступающего к форсункам, кДж/кг;
r - теплота парообразования, кДж/кг.
Разделив
уравнение теплового баланса на
,
получим
![]()
где слагаемые представляют собой величины, выраженные в долях от располагаемой теплоты.
При
сжигании жидких и газообразных топлив
и
пренебрежимо
малы, а
принимают
в размере
![]()
Тогда
![]()

где
-
определяется по диаграмме Н- t
, а
-
по формуле
при
t0
.
Коэффициент полезного действия печи
![]()
Расход тетива, кг/с, м3/с,
![]()
Проверка теплового баланса, кВт,
![]()
Лекция 16 Котельные установки. Общие сведения
Устройства, предназначенные для получения пара или горячей воды повышенного давления за счет теплоты, выделяемой при сжигании топлива или подводимой от посторонних источников (обычно с горючими газами), называют котлами. Они делятся соответственно на котлы паровые и котлы водогрейные. Котлы, использующие (т. е. утилизирующие) теплоту отходящих из печей газов или других основных и побочных продуктов различных технологических процессов, называют котлами-утилизаторами.
С целью обеспечения стабильной и безопасной работы котла его снабжают вспомогательным оборудованием, служащим для подготовки и подачи топлива, воздуха, очистки и подачи воды, отвода продуктов сгорания и их очистки от золы и токсичных примесей, удаления золошлаковых остатков.
Комплекс устройств, включающий в себя собственно котел и вспомогательное оборудование, называют котельной установкой.
Устройство парового котла
Одна из схем котла с естественной циркуляцией приведена на рисунке. Барабанный паровой котел состоит из топочной камеры и газоходов, барабана, поверхностей нагрева, находящихся под давлением рабочей среды (воды, пароводяной смеси, пара), воздухоподогревателя, соединительных трубопроводов и воздуховодов.
Топливо подается к горелкам 7 (рисунок 16.1). К горелкам подводится также воздух, предварительно нагретый уходящими из котла газами в воздухоподогревателе 5. Топливовоздушная смесь, подаваемая горелками в топочную камеру (топку) 8 парового котла, сгорает, образуя высокотемпературный (примерно 1500 °С) факел, излучающий теплоту на трубы /, расположенные на внутренней поверхности стен топки. Это испарительные поверхности нагрева — экраны. Отдав часть теплоты экранам, топочные газы с температурой около 1000 °С проходят через верхнюю часть заднего экрана, трубы которого здесь разведены в два-три ряда, и омывают пароперегреватель 3. Затем продукты сгорания движутся через водяной экономайзер, воздухоподогреватель и покидают котел с температурой около ПО—150 °С.

Рисунок 16.1 - Вертикально-водотрубный барабанный паровой котел
с естественной циркуляцией:
ПВ — подача питательной воды; НП — линия насыщенного пара;ПП — отвод перегретого пара;Т — подача топлива к горелке;В — подвод воздуха к воздухоподогревателю; ГВ — горячий воздух; ПС — У Г — тракт продуктов сгорания топлива и уходящих (из котла) газов;Ш — шлак;1— экранные трубы;2 — барабан;3 — пароперегреватель; 4 — водяной экономайзер; 5 — воздухоподогреватель; 6 — коллекторы; 7 — горелка; 8 — топка;9 контур (стена) топки и газоходов;10 — опускная труба;11— излучающий теплоту топочный факел.
Вода, поступающая в паровой котел, называется питательной. Она подогревается в водяном экономайзере 4, забирая теплоту от продуктов сгорания (уходящих газов), экономя тем самым теплоту сожженного топлива. Испарение воды происходит в экранных трубах 1. Испарительные поверхности подключены к барабану 2 и вместе с опускными трубами 10, соединяющими барабан с нижними коллекторами экранов, образуют циркуляционный контур. В барабане происходит разделение пара и воды, кроме того, большой запас воды в нем повышает надежность работы котла. Сухой насыщенный пар из барабана поступает в пароперегреватель 3, перегретый пар направляется к потребителю.
Все поверхности нагрева котла, в том числе и воздухоподогреватель, как правило, трубчатые. Лишь некоторые мощные паровые котлы имеют воздухоподогреватели иной конструкции.
Газоход, в котором расположены водяной экономайзер и воздухоподогреватель, называют конвективным (конвективная шахта), в нем теплота передается воде и воздуху в основном конвекцией. Поверхности нагрева, встроенные в этот газоход и называемые также хвостовыми, позволяют снизить температуру продуктов сгорания от 500—700 °С после пароперегревателя почти до 100 °С, В газоходах и топке котла за счет тяги специально устанавливаемого дымососа поддерживается разрежение. Оно не позволяет продуктам сгорания выбиваться в атмосферу котельного цеха через возможные неплотности обмуровки, через лючки и лазы.
Паровые котлы оснащаются системами дистанционного управления и автоматизации, обеспечивающими надежную, безопасную и экономичную их работу.
