
- •Затверджено
- •Навчально-методичний посібник
- •5.03050801 „Фінанси і кредит”, 5.03050401 „Економіка підприємства”
- •Тема 1.1. Вступ. Множини та операції над ними
- •Тема 1.2. Комбінаторика. Біном Ньютона
- •1.1. Вступ. Множини та операції над ними Література
- •Питання, що виносяться на самостійну роботу:
- •Перехід від алгебраїчної форми запису комплексного числа до тригонометричної, показникової і навпаки
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Розв’язування квадратних рівнянь з від’ємним дискримінантом
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •1.2. Комбіноторика. Біном Ньютона Література
- •Питання, що виносяться на самостійну роботу:
- •Основні принципи комбінаторики
- •Розв’язування комбінаторних задач
- •Тема 2.1. Матриці та визначники
- •Тема 2.2. Системи лінійних алгебраїчних рівнянь
- •2.1. Матриці та визначники Література
- •Питання, що виносяться на самостійну роботу:
- •Розв’язування матричних рівнянь
- •Розв’язування матричних рівнянь:
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Знаходження рангу матриць з використанням елементарних перетворень
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 3.1. Векторна алгебра
- •Тема 3.2. Аналітична геометрія
- •3.1. Векторна алгебра Література
- •Питання, що виносяться на самостійну роботу:
- •Векторні та скалярні величини. Координати вектора. Дії над векторами в координатній формі. Скалярний добуток і його властивості. Кут між векторами
- •Координати вектора
- •Дії над векторами в координатній формі
- •Розв’язання
- •Приклади для самостійного розв’язування
- •3.2. Аналітична геометрія Література
- •Питання, що виносяться на самостійну роботу:
- •Розв’язування задач на криві другого порядку
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 4.1. Задачі лінійного програмування
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 5.1. Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції
- •5.1 Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції Література
- •Питання, що виносяться на самостійну роботу:
- •Означення функціональної залежності. Функції в економіці. Способи задання функцій
- •Розв’язання
- •Способи задання функції:
- •За означенням, для взаємно обернених функцій маємо:
- •Приклади для самостійного розв’язування
- •Дослідження основних властивостей функції: області визначення, парності, непарності функції, періодичності за аналітичним заданням функції
- •Розв’язання
- •Елементарні функції
- •Приклади для самостійного розв’язування
- •Тема 6.1. Похідна функції та диференціал
- •Тема 6.2. Застосування диференціального числення до дослідження функцій та побудови їх графіків
- •6.1. Похідна функції та диференціал Література
- •Питання, що виносяться на самостійну роботу:
- •Задачі, які приводять до поняття похідної. Геометричний та механічний зміст похідної. Означення похідної функції. Основні правила диференціювання
- •Властивості еластичності функції:
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Означення похідної функції
- •Механічний зміст похідної:
- •Основні правила диференціювання
- •Доведення
- •Похідні функцій заданих неявно та параметрично
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Диференціал, його геометричний зміст. Застосування диференціала до наближених обчислень.
- •Диференціали вищих порядків
- •Питання, що виносяться на самостійну роботу:
- •Зростання, спадання та екстремуми функцій, необхідні та достатні умови. Асимптоти до графіка функцій Зростання та спадання функції
- •Розв’язання
- •Доведення
- •Екстремуми функції
- •Проте виявляється, що цього недостатньо, бо може , а функція в цій точці екстремуму не має.
- •Якщо в критичній точці, то нічого конкретного сказати не можна, бо в цій точці може бути екстремум, а може й не бути.
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Асимптоти до графіка функцій
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Дослідження функцій за допомогою похідної
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних
- •7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних Література
- •Питання, що виносяться на самостійну роботу:
- •Границя та неперервність функцій кількох змінних
- •Розв’язання
- •Доведення
- •Неперервність функцій двох змінних
- •Неперервність складеної (складної) функції двох змінних
- •Приклади для самостійного розв’язування
- •Найбільше та найменше значення функції в замкненій області
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Застосування диференціального числення функцій багатьох змінних до наближених обчислень
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 8.1. Невизначений інтеграл
- •Тема 8.2. Визначений інтеграл та його застосування
- •Тема 8.3. Диференціальні рівняння першого порядку
- •8.1. Невизначений інтеграл Література
- •Питання, що виносяться на самостійну роботу:
- •Первісна функція. Невизначений інтеграл і його властивості. Таблиця невизначених інтегралів
- •І. Похідна від невизначеного інтеграла дорівнює підінтегральній функції
- •Метод інтегрування частинами
- •Приклади для самостійного розв’язування
- •8.2. Визначений інтеграл та його застосування Література
- •Питання, що виносяться на самостійну роботу:
- •Визначений інтеграл та його основні властивості
- •Приклади для самостійного розв’язування
- •Обчислення довжини дуги плоскої фігури, об’єму тіла обертання Площа фігури
- •Розв’язання
- •Область задана в полярних координатах
- •Об’єм тіла, отриманого при обертанні кривої навколо координатної вісі
- •Розв’язання
- •Питання, що виносяться на самостійну роботу:
- •Розв’язування вправ на диференціальні рівняння першого порядку
- •Розв’язання
- •Рівняння з відокремлювальними змінними
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Лінійні рівняння
- •Розв’язання
- •Розв’язання
- •Однорідні рівняння
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 9.1. Числові ряди, їх збіжність.
- •Тема 9.2. Степеневі ряди.
- •9.1. Числові ряди, їх збіжність Література
- •Питання, що виносяться на самостійну роботу:
- •Ряд геометричної прогресії, його збіжність
- •Розв’язання
- •Радикальна ознака Коші. Використання ознак збіжності рядів з додатними членами
- •Візьмемо другий додатний числовий ряд, збіжність чи розбіжність якого відома
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Знакопочергові ряди. Ознака Лейбніца
- •Розв’язання
- •Приклади для самостійного розв’язування
- •9.2. Степеневі ряди Література
- •Питання, що виносяться на самостійну роботу:
- •Ряди Тейлора та Маклорена. Розклад елементарних функцій в ряд Маклорена.
- •Приклади для самостійного розв’язування
Приклади для самостійного розв’язування
Дослідити збіжність рядів:
а)
; б)
; в)
;
г)
; д)
; ж)
.
9.2. Степеневі ряди Література
Барковський В.В., Барковська Н.В. Математика для економістів: Вища математика. – К.: Національна академія управління, 1997. – 397с. (с. 350 - 359).
Вища математика: Навч.-метод.посібник для самост.вивч.дисц. / К.Г.Валєєв, І.А.Джалладова, О.І.Лютий та ін. – К.: КНЕУ, 1999. – 396 с. (с. 351 - 366).
Математика для техникумов. Алгебра и начала анализа: Учебник. Под ред. Г.Н.Яковлева. – М.: Наука, 1988. – 272 с. (с. 157 - 177).
Пак В.В., Носенко Ю.Л. Вища математика: Підручник. – К.: Либідь, 1996. – 440 с. (с. 286 - 294).
Питання, що виносяться на самостійну роботу:
Ряди Тейлора та Маклорена. Розклад елементарних функцій в ряд Маклорена
Ряди Тейлора та Маклорена. Розклад елементарних функцій в ряд Маклорена.
Ряд Тейлора - розклад функції в нескінченну суму степеневих рядів. Ряд названий на честь англійського математика Тейлора, хоча ряд Тейлора був відомий задовго до публікації Тейлора – його використовували ще в ХVІІ столітті Григорі, а також Ньютон.
Означення.
Нехай функція
f(x)
нескінченно диференційована в деякому
околі точки a.
Формальний ряд
називається рядом Тейлора функції
f
в точці
a.
Означення. Рядом Маклорена функції f(x) називають степеневий ряд по степенях х, який можна дістати з ряду Тейлора при а= 0:
(1)
Правило розкладання функції в ряд: щоб функцію f(x) розкласти в ряд Маклорена потрібно:
а) знайти похідні f´(х), f˝(х), ...., fп(х), ...;
б) обчислити значення похідних в точці х = 0;
в) записати ряд Маклорена (1) для даної функції і знайти інтервал його збіжності;
г) визначити інтервал (–R; R), в якому залишковий член формули Маклорена Rп (х) → 0 при п → ∞.
Якщо такий інтервал існує (він може відрізнятись від інтервалу збіжності ряду (41)), то в цьому інтервалі функція f (х) і сума ряду Маклорена збігаються:
Розглянемо ряди Маклорена деяких елементарних функцій (вони часто використовуються і тому їх варто запам’ятати):
(2)
(3)
(4)
(5)
(6)
(7)
(8)
Доведемо формули (2) – (8).
Нехай f (x)=ex. Маємо:
а)
б)
в)
отже
знайдений ряд зберігається в інтервалі
(– ∞;+ ∞);
г)
тому
за теоремою функцією ех
можна розкласти в степеневий ряд на
довільному інтервалі (-
R;
R)
(-∞;
+ ∞),
а отже, і на всьому інтервалі (-∞;
+ ∞).
Формулу
(2) доведено.
Нехай f (x) = sin x. Дістанемо
а) f’(x)
= cos x
= sin (x
+
);
fn(x) = sin x = sin (x + 2 );
f’’’(x) = cos x = sin (x + 3 );
……………………………
fn(x)
= sin (x
+ 2
),
n
N;
б)
fn(0)
= sin n
=
в)
(-1)n
=
;
R=
lim
=
=
г)
x
тобто
формулу (3) доведено.
3.Нехай f(х) = cos x. Формулу (4) можна довести так само, як і формулу (3). Проте це можна зробити значно простіше, про диференціювавши почленно ряд (3).
4.Нехай f(х) = (1+x)m, m R.Маємо:
а) f’(x) =m(1+x)m-1, fn(x) =m(m-1) (1+x)m-2,…,
f(n)(x) =m(m-1)…(m-n+1) (1+x)m-n, n N;
б) f(n)(0) =m(m-1)…(m-n+1) (1+x)m-n, n N;
в) 1+ mx
+
R=
тобто
знайдений ряд збіжний в інтервалі (1,1).
Доведення, що на цьому інтервалі
,
опускаємо.
Ряд (5)
називають біноміальним. Якщо
дістаємо
відомий розклад двочлена, який називають
біномом Ньютона.
Збіжність біноміального ряду в кінцевих точках інтервалу (-1;1) залежить від числа m.
Ряд (5) збіжний до функції (1+х)m в таких випадках:
- при m,
якщо
;
- при -1<m < 0, якщо ;
- при
m
,
якщо
.
Приймемо ці твердження без доведення.
5. Нехай
f(x)
=
.
Формулу (6) виводимо трьома способами:
користуючись правилом розкладання
функції в ряд; застосувавши формулу (5)
і поклавши в ній m=-1
і –x
замість х;
розглядаючи ряд 1+х+х2+...хn+...
як геометричну прогресію, перший член
якої дорівнює одиниці, а знаменний q=x.
Відомо , що даний ряд збіжний при
і
сума його дорівнює (1-х)-1.
6. Не зупиняючись на деталях, зазначимо, що коли у формулі (6) покласти – х замість х, потім – х2 замість х і знайдені ряд про інтегрувати, то дістанемо розклад в степеневий ряд функції ln(1+x) і функції arctg x (формули (7), (8)).
Ряди (2) - (8) використовуються при знаходження степеневих рядів для інших функцій.
Приклад. Розкласти в ряд функцію f(x) = x2 ln (1-x3).
Поклавши у формулу (7) – х3 замість х, маємо:
ln(1-x3)=-x3-
x2
ln(1-x3)
=-x5-