
- •Затверджено
- •Навчально-методичний посібник
- •5.03050801 „Фінанси і кредит”, 5.03050401 „Економіка підприємства”
- •Тема 1.1. Вступ. Множини та операції над ними
- •Тема 1.2. Комбінаторика. Біном Ньютона
- •1.1. Вступ. Множини та операції над ними Література
- •Питання, що виносяться на самостійну роботу:
- •Перехід від алгебраїчної форми запису комплексного числа до тригонометричної, показникової і навпаки
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Розв’язування квадратних рівнянь з від’ємним дискримінантом
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •1.2. Комбіноторика. Біном Ньютона Література
- •Питання, що виносяться на самостійну роботу:
- •Основні принципи комбінаторики
- •Розв’язування комбінаторних задач
- •Тема 2.1. Матриці та визначники
- •Тема 2.2. Системи лінійних алгебраїчних рівнянь
- •2.1. Матриці та визначники Література
- •Питання, що виносяться на самостійну роботу:
- •Розв’язування матричних рівнянь
- •Розв’язування матричних рівнянь:
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Знаходження рангу матриць з використанням елементарних перетворень
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 3.1. Векторна алгебра
- •Тема 3.2. Аналітична геометрія
- •3.1. Векторна алгебра Література
- •Питання, що виносяться на самостійну роботу:
- •Векторні та скалярні величини. Координати вектора. Дії над векторами в координатній формі. Скалярний добуток і його властивості. Кут між векторами
- •Координати вектора
- •Дії над векторами в координатній формі
- •Розв’язання
- •Приклади для самостійного розв’язування
- •3.2. Аналітична геометрія Література
- •Питання, що виносяться на самостійну роботу:
- •Розв’язування задач на криві другого порядку
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 4.1. Задачі лінійного програмування
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 5.1. Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції
- •5.1 Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції Література
- •Питання, що виносяться на самостійну роботу:
- •Означення функціональної залежності. Функції в економіці. Способи задання функцій
- •Розв’язання
- •Способи задання функції:
- •За означенням, для взаємно обернених функцій маємо:
- •Приклади для самостійного розв’язування
- •Дослідження основних властивостей функції: області визначення, парності, непарності функції, періодичності за аналітичним заданням функції
- •Розв’язання
- •Елементарні функції
- •Приклади для самостійного розв’язування
- •Тема 6.1. Похідна функції та диференціал
- •Тема 6.2. Застосування диференціального числення до дослідження функцій та побудови їх графіків
- •6.1. Похідна функції та диференціал Література
- •Питання, що виносяться на самостійну роботу:
- •Задачі, які приводять до поняття похідної. Геометричний та механічний зміст похідної. Означення похідної функції. Основні правила диференціювання
- •Властивості еластичності функції:
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Означення похідної функції
- •Механічний зміст похідної:
- •Основні правила диференціювання
- •Доведення
- •Похідні функцій заданих неявно та параметрично
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Диференціал, його геометричний зміст. Застосування диференціала до наближених обчислень.
- •Диференціали вищих порядків
- •Питання, що виносяться на самостійну роботу:
- •Зростання, спадання та екстремуми функцій, необхідні та достатні умови. Асимптоти до графіка функцій Зростання та спадання функції
- •Розв’язання
- •Доведення
- •Екстремуми функції
- •Проте виявляється, що цього недостатньо, бо може , а функція в цій точці екстремуму не має.
- •Якщо в критичній точці, то нічого конкретного сказати не можна, бо в цій точці може бути екстремум, а може й не бути.
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Асимптоти до графіка функцій
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Дослідження функцій за допомогою похідної
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних
- •7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних Література
- •Питання, що виносяться на самостійну роботу:
- •Границя та неперервність функцій кількох змінних
- •Розв’язання
- •Доведення
- •Неперервність функцій двох змінних
- •Неперервність складеної (складної) функції двох змінних
- •Приклади для самостійного розв’язування
- •Найбільше та найменше значення функції в замкненій області
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Застосування диференціального числення функцій багатьох змінних до наближених обчислень
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 8.1. Невизначений інтеграл
- •Тема 8.2. Визначений інтеграл та його застосування
- •Тема 8.3. Диференціальні рівняння першого порядку
- •8.1. Невизначений інтеграл Література
- •Питання, що виносяться на самостійну роботу:
- •Первісна функція. Невизначений інтеграл і його властивості. Таблиця невизначених інтегралів
- •І. Похідна від невизначеного інтеграла дорівнює підінтегральній функції
- •Метод інтегрування частинами
- •Приклади для самостійного розв’язування
- •8.2. Визначений інтеграл та його застосування Література
- •Питання, що виносяться на самостійну роботу:
- •Визначений інтеграл та його основні властивості
- •Приклади для самостійного розв’язування
- •Обчислення довжини дуги плоскої фігури, об’єму тіла обертання Площа фігури
- •Розв’язання
- •Область задана в полярних координатах
- •Об’єм тіла, отриманого при обертанні кривої навколо координатної вісі
- •Розв’язання
- •Питання, що виносяться на самостійну роботу:
- •Розв’язування вправ на диференціальні рівняння першого порядку
- •Розв’язання
- •Рівняння з відокремлювальними змінними
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Лінійні рівняння
- •Розв’язання
- •Розв’язання
- •Однорідні рівняння
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 9.1. Числові ряди, їх збіжність.
- •Тема 9.2. Степеневі ряди.
- •9.1. Числові ряди, їх збіжність Література
- •Питання, що виносяться на самостійну роботу:
- •Ряд геометричної прогресії, його збіжність
- •Розв’язання
- •Радикальна ознака Коші. Використання ознак збіжності рядів з додатними членами
- •Візьмемо другий додатний числовий ряд, збіжність чи розбіжність якого відома
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Знакопочергові ряди. Ознака Лейбніца
- •Розв’язання
- •Приклади для самостійного розв’язування
- •9.2. Степеневі ряди Література
- •Питання, що виносяться на самостійну роботу:
- •Ряди Тейлора та Маклорена. Розклад елементарних функцій в ряд Маклорена.
- •Приклади для самостійного розв’язування
Розв’язання
Оскільки
, то пряма x = 0 (вісь Ох) є вертикальною асимптотою.
Нехай похила асимптота має рівняння у = kx + b, тоді:
Звідси, пряма у = х + 2 - похила асимптота для графіка функції (рис. 3).
Відповідь. Пряма у = х + 2 - похила асимптота для графіка функції.
Рис.2 Рис.3
Приклади для самостійного розв’язування
Знайти екстремум функції у = 2х3 – 9х2 + 12х + 7.
Знайти інтервали зростання, спадання та екстремуми функцій:
а) у = х2 + 2х -3;
б)
у
=
;
в)
;
г) у = х3 – 3х +4.
Знайти асимптоти графіка функцій:
а)
;
б)
.
Знайти найбільше та найменше значення функції:
а) у = х3 – 3х2 + 9х;
б) у = 2х3 +3х2 – 12х + 1.
Дослідження функцій за допомогою похідної
Загальновідомою є схема дослідження функції для побудови графіка:
знайти область визначення функції та множину її значень;
дослідити функцію на парність та непарність, періодичність;
знайти точки перетину графіка функції з осями системи координат, точки розриву, проміжки знакосталості функції;
дослідити поводження функції біля точок розриву та на нескінченності, знайти якщо вони є, асимптоти графіка;
знайти нулі та точки розриву похідної, інтервали монотонності функції, точки екстремуму та екстремальні значення функції;
знайти нулі та точки розриву другої похідної, інтервали опуклості графіка функції, точки перегину та значення функції в цих точках;
для побудови графіка необхідно знайти достатню кількість контрольних точок, через які він проходить.
Зауважимо, що на практиці не завжди є потреба досліджувати функцію за наведеною схемою і в такій саме послідовності.
Так, наприклад, множину значень деяких функцій можна встановити лише після знаходження екстремальних значень функції та її поводження біля точок розриву і на нескінченності.
Можна спочатку знайти нулі функції. Якщо вони розташовані не симетрично відносно нуля, то функція не може бути ні непарною, ні парною, ні періодичною. Такий же висновок можна зробити у випадку, коли функція має область визначення не симетричну відносно нуля, то, зрозуміло, що з такого факту ми не можемо робити висновок про парність або непарність. Проте, якщо нулі функції симетричні відносно нуля, але їх число скінчене, то вона не є періодичною.
Не може бути функція ні парною, ні непарною, ні періодичною, якщо нулі першої або другої похідних розміщені несиметрично відносно нуля.
Аналогічно можна зробити висновок і з несиметричного розміщення точок розриву.
Для
складних функцій
можна керуватися такими простими
твердженнями:
якщо функція
парна, то складна функція також парна;
якщо функція
і непарні, то складна функція непарна;
якщо непарна, а функція парна, то складна функція парна;
якщо функція періодична, то і складна функція періодична, причому її період може бути меншим за період функції , але не більшим; їх періоди збігаються, якщо функція f строго монотонна.
Зручно користуватися такими твердженнями:
сума скінченого числа парних (непарних) функцій є парною (непарною) функцією;
добуток парних функцій є парною функцією;
добуток непарних функцій є парною функцією, якщо число функцій-множників – парне число, і непарною, якщо число функцій-множників непарне;
добуток(частка) парної і непарної функції є функцією непарною.
Дослідимо функції та побудуємо їх графіки.
Приклад.
Побудувати графік функції