- •Затверджено
- •Навчально-методичний посібник
- •5.03050801 „Фінанси і кредит”, 5.03050401 „Економіка підприємства”
- •Тема 1.1. Вступ. Множини та операції над ними
- •Тема 1.2. Комбінаторика. Біном Ньютона
- •1.1. Вступ. Множини та операції над ними Література
- •Питання, що виносяться на самостійну роботу:
- •Перехід від алгебраїчної форми запису комплексного числа до тригонометричної, показникової і навпаки
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Розв’язування квадратних рівнянь з від’ємним дискримінантом
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •1.2. Комбіноторика. Біном Ньютона Література
- •Питання, що виносяться на самостійну роботу:
- •Основні принципи комбінаторики
- •Розв’язування комбінаторних задач
- •Тема 2.1. Матриці та визначники
- •Тема 2.2. Системи лінійних алгебраїчних рівнянь
- •2.1. Матриці та визначники Література
- •Питання, що виносяться на самостійну роботу:
- •Розв’язування матричних рівнянь
- •Розв’язування матричних рівнянь:
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Знаходження рангу матриць з використанням елементарних перетворень
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 3.1. Векторна алгебра
- •Тема 3.2. Аналітична геометрія
- •3.1. Векторна алгебра Література
- •Питання, що виносяться на самостійну роботу:
- •Векторні та скалярні величини. Координати вектора. Дії над векторами в координатній формі. Скалярний добуток і його властивості. Кут між векторами
- •Координати вектора
- •Дії над векторами в координатній формі
- •Розв’язання
- •Приклади для самостійного розв’язування
- •3.2. Аналітична геометрія Література
- •Питання, що виносяться на самостійну роботу:
- •Розв’язування задач на криві другого порядку
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 4.1. Задачі лінійного програмування
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 5.1. Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції
- •5.1 Функціональна залежність. Елементарні функції. Границя функції. Неперервність функції Література
- •Питання, що виносяться на самостійну роботу:
- •Означення функціональної залежності. Функції в економіці. Способи задання функцій
- •Розв’язання
- •Способи задання функції:
- •За означенням, для взаємно обернених функцій маємо:
- •Приклади для самостійного розв’язування
- •Дослідження основних властивостей функції: області визначення, парності, непарності функції, періодичності за аналітичним заданням функції
- •Розв’язання
- •Елементарні функції
- •Приклади для самостійного розв’язування
- •Тема 6.1. Похідна функції та диференціал
- •Тема 6.2. Застосування диференціального числення до дослідження функцій та побудови їх графіків
- •6.1. Похідна функції та диференціал Література
- •Питання, що виносяться на самостійну роботу:
- •Задачі, які приводять до поняття похідної. Геометричний та механічний зміст похідної. Означення похідної функції. Основні правила диференціювання
- •Властивості еластичності функції:
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Означення похідної функції
- •Механічний зміст похідної:
- •Основні правила диференціювання
- •Доведення
- •Похідні функцій заданих неявно та параметрично
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Диференціал, його геометричний зміст. Застосування диференціала до наближених обчислень.
- •Диференціали вищих порядків
- •Питання, що виносяться на самостійну роботу:
- •Зростання, спадання та екстремуми функцій, необхідні та достатні умови. Асимптоти до графіка функцій Зростання та спадання функції
- •Розв’язання
- •Доведення
- •Екстремуми функції
- •Проте виявляється, що цього недостатньо, бо може , а функція в цій точці екстремуму не має.
- •Якщо в критичній точці, то нічого конкретного сказати не можна, бо в цій точці може бути екстремум, а може й не бути.
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Асимптоти до графіка функцій
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Дослідження функцій за допомогою похідної
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних
- •7.1. Функції багатьох змінних. Екстремуми функцій багатьох змінних Література
- •Питання, що виносяться на самостійну роботу:
- •Границя та неперервність функцій кількох змінних
- •Розв’язання
- •Доведення
- •Неперервність функцій двох змінних
- •Неперервність складеної (складної) функції двох змінних
- •Приклади для самостійного розв’язування
- •Найбільше та найменше значення функції в замкненій області
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Застосування диференціального числення функцій багатьох змінних до наближених обчислень
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 8.1. Невизначений інтеграл
- •Тема 8.2. Визначений інтеграл та його застосування
- •Тема 8.3. Диференціальні рівняння першого порядку
- •8.1. Невизначений інтеграл Література
- •Питання, що виносяться на самостійну роботу:
- •Первісна функція. Невизначений інтеграл і його властивості. Таблиця невизначених інтегралів
- •І. Похідна від невизначеного інтеграла дорівнює підінтегральній функції
- •Метод інтегрування частинами
- •Приклади для самостійного розв’язування
- •8.2. Визначений інтеграл та його застосування Література
- •Питання, що виносяться на самостійну роботу:
- •Визначений інтеграл та його основні властивості
- •Приклади для самостійного розв’язування
- •Обчислення довжини дуги плоскої фігури, об’єму тіла обертання Площа фігури
- •Розв’язання
- •Область задана в полярних координатах
- •Об’єм тіла, отриманого при обертанні кривої навколо координатної вісі
- •Розв’язання
- •Питання, що виносяться на самостійну роботу:
- •Розв’язування вправ на диференціальні рівняння першого порядку
- •Розв’язання
- •Рівняння з відокремлювальними змінними
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Лінійні рівняння
- •Розв’язання
- •Розв’язання
- •Однорідні рівняння
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Тема 9.1. Числові ряди, їх збіжність.
- •Тема 9.2. Степеневі ряди.
- •9.1. Числові ряди, їх збіжність Література
- •Питання, що виносяться на самостійну роботу:
- •Ряд геометричної прогресії, його збіжність
- •Розв’язання
- •Радикальна ознака Коші. Використання ознак збіжності рядів з додатними членами
- •Візьмемо другий додатний числовий ряд, збіжність чи розбіжність якого відома
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Приклади для самостійного розв’язування
- •Знакопочергові ряди. Ознака Лейбніца
- •Розв’язання
- •Приклади для самостійного розв’язування
- •9.2. Степеневі ряди Література
- •Питання, що виносяться на самостійну роботу:
- •Ряди Тейлора та Маклорена. Розклад елементарних функцій в ряд Маклорена.
- •Приклади для самостійного розв’язування
Доведення
Суму функцій u(x)+(x), де х є [a; b], яка являє собою нову функцію, позначимо через f(x) і знайдемо похідну цієї функції.
Нехай х0 – деяка точка інтервала [a; b].
Тоді
Також,
Так як х0 – допустима точка інтервала [a; b], то маємо:
Випадок різниці розглядається аналогічно. Теорема доведена.
Наприклад,
а)
б)
в)
Теорема. Якщо функції u(x) і (x) мають похідні у всіх точках інтервала [a; b], то:
для любого х є [a; b]. Тобто,
Доведення
Позначимо
похідну добутку
через
х
є
[a;
b],
і знайдемо похідну цієї функції, виходячи
із означення.
Нехай х0 – деяка точка інтервала [a; b]. Тоді:
А
так як
то:
Так як х0 – вільна точка інтервала [a; b], то маємо:
Теорема доведена.
Наприклад,
а)
б)
в)
Наслідок. Постійний множник можна виносити за знак похідної:
Доведення
Застосувавши теорему про похідну сталий множник можна виносити за знак похідної, де а – число, отримаємо:
Наприклад,
а)
б)
Похідна частки двох функцій .
Теорема.
Якщо
функції
мають
похідні у всіх точках інтервалу [a;
b],
причому
для любого х є [a;
b],
то:
для любого х є [a; b].
Доведення
Позначимо
тимчасово
через
знайдемо
використовуючи
означення похідної.
Нехай х0 – деяка точка інтервала [a; b].
Тоді,
Так як
то
А отже
Так як х0 – вільна точка інтервалу [a; b], то в формулі х0 можна замінити на х. Теорема доведена.
Наприклад,
а)
б)
Приклад.
Знайти
Розв’язання
Чисельник
та знаменник дробу окремо прямують до
нуля при x
→
0, (невизначеність вигляду
).
Використовуючи правило Лопіталя, одержимо:
Відповідь.
Приклади для самостійного розв’язування
Користуючись означенням похідної, знайти похідну функцій:
а) у = 2х3 + 5х2 – 7х – 4;
б) у = -ctgх – х;
в) у = sin (2х+3).
Знайти граничний доход підприємства, якщо кількісь виготовлених та проданих виробів х та роздрібна вартість кожного виробу р зв’язані з рівністю х = 4000 – 2р.
Функція витрат підприємства має вигляд V(x)=2000+10x-0,1х2+0,002х3 (тисяч гривень). Знайти граничну вартість при х = 50, х = 100 та х = 120.
Похідні функцій заданих неявно та параметрично
Означення.
Якщо функція задана у вигляді
,
де
t
-
параметр, то це завдання називають
параметричним.
Для знаходження похідної використовують формулу:
(1)
Для знаходження другої похідної необхідно:
(2)
Приклад. Знайти похідну функції, заданої параметрично
Розв’язання
Знайдемо
Знайдемо
Тоді
за формулою (1)
Тоді
за формулою (2):
Відповідь.
;
Означення. Функція виду F(x;y) = 0, де х - незалежна змінна, у - функція називається функцією, що задана неявно.
Наприклад,
х2у2
+ 2у4
+
=
0
у2 cos х + 5ху3 = 0.
Надалі будемо вважати, що ця функція - диференційована.
Продиференціювавши по х обидві частини рівняння F(x;y) = 0, дістанемо, рівняти першого степеня відносно у. З цього рівняння легко знайти у', тобто похідну неявної функції
Приклад. Знайти у', якщо х2 + у2 = 4
