
- •Тема 1. Електричне поле 7
- •1.1. Фізика і її зв’язок з іншими науками і технікою.
- •Тема 2. Постійний струм 27
- •Тема 3. Магнітне поле. Електромагнітна індукція 53
- •3.4. Електромагнітна індукція. Закон електромагнітної
- •Тема 4. Електромагнітні коливання і хвилі 72
- •4.4. Коло змінного струму з опором, індуктивністю і
- •4.5. Передача і перетворенняя змінного струму.
- •1.1. Фізика і її зв’язок з іншими
- •Основні поняття теорії фізики
- •1.1.3. Фізичні величини та їх вимірювання
- •1.1.4. Фізичні поняття, закони і теорії
- •1.1.5. Зв'язок фізики з іншими науками і технікою
- •1.2.2. Заряд і поле. Поле як вид матерії
- •1.2.3. Взаємодія заряджених тіл. Закон кулона
- •1.2.4. Напруженість електричного поля
- •1.2.5. Графічне відображення електричного поля
- •1.3.2. Теорема остроградського - гаусса
- •1.3.3. Застосування теореми остроградського - гаусса
- •2. Напруженість електричного поля рівномірно зарядженої сферичної поверхні.
- •1.4.2. Потенціал електричного поля. Різниця потенціалів (напруга). Еквіпотенціальні поверхні
- •1.4.3. Різниця потенціалів (напруга). Еквіпотенціальні поверхні
- •1.5.2. Діелектрики в електричному полі. Поляризація діелектриків
- •1.5.3. Особливості деяких діелектриків
- •1.6. Електроємнсь. Конденсатори. З'єднання конденсаторів
- •1.6.1. Електроємність провідника
- •1.6.2. Конденсатори та їх застосування
- •1.6.3. З’єднання конденсаторів
- •Тема 2. Постійний струм
- •2.1. Постійний струм. Опір. Закон ома
- •2.1.1. Електричний струм. Основні характеристики електричного струму
- •2.1.2. Закон ома для ділянки кола. Опір
- •2.1.3. Сторонні сили. Джерело електричного струму
- •2.1.4. Закон ом а для будь-якої ділянки і для повного кола
- •2.2. Правила кірхгофа
- •2.2.1. Розгалуження струму. Правила кірхгофа
- •2.2.2. Вимірювання сили струму. Розширення меж вимірювання амперметра.
- •2.2.3. Вимірювання напруги. Розширення меж вимірювання вольтметра.
- •2.3. Робота і потужність струму. Закон джоуля-ленца
- •2.3.1. Робота постійного електричного струму
- •2.3.2. Потужність постійного електричного струму
- •2.3.3. Теплова дія електричного струму. Закон джоуля - ленца
- •2.4. Електропровідність твердих тіл
- •2.4.1. Електричний струм в металах
- •2.4.2. Залежність опору металів від температури. Надпровдність
- •2.4.3. Поняття про квантову теорію провідності твердих тіл
- •2.5. Електричний струм в напівпровідниках
- •2.5.1. Будова й електричні властивості напівпровідників
- •2.5.2. Власна й домішкова провідність напівпровідників
- •2.5.3. Електронно-дірковий перехід
- •2.6. Термоелектричні і контактні явища
- •2.6.1. Робота виходу
- •2.6.2. Контактна різниця потенціалів. Закони вольта
- •2.6.3. Термоелектричні явища
- •2.7. Електричний струм в рідинах і газах
- •2.7.1. Електричний струм в рідинах
- •2.7.2. Електричний струм в газах
- •2.7.3. Поняття про плазму
- •2.7.4. Термоелектронна емісія
- •Тема 3. Магнітне поле. Електромагнітна індукція
- •3.1. Магнітне поле і його характеристики. Закон ампера
- •3.1.1. Магнітне поле і його характеристики
- •3.1.2. Дія магнітного поля на електричний струм. Сила ампера
- •3.1.3. Магнітне поле постійного електричного струму. Закон біо - савара - лапласа
- •3.1.4. Взаємодія двох прямих струмів
- •3.2. Дія електричного і магнітного полів на рухомий заряд
- •3.2.1. Дія магнітного поля на рухому заряджену частинку. Сила лоренца
- •3.2.2. Рух електрона в однорідному магнітному полі
- •3.2.3. Еффект холла
- •4.3. Магнітні властивості речовин
- •3.3.1. Магнетики 1 їх намагнічування
- •3.3.2. Магнітне поле в магнетиках. Діамагнетики і парамагнетики
- •3.3.3. Феромагнетики та їх властивості
- •3.3.4. Магнітні матеріали I їх застосування
- •3.4. Електромагнітна індукція. Закон електромагнітної індукції
- •3.4.1. Потік магнітної індукції (магнітний потік)
- •3.4.2. Електромагнітна індукція. Досліди фарадея
- •3.4.3. Закон ленца
- •3.4.4. Основний закон електромагнітної індукції
- •3.5. Самоіндукція. Взаємна індукція. Енергія магнітного поля струму
- •3.5.1. Явище самоіндукції. Індуктивність контуру
- •3.5.2. Явище взаємної індукції
- •3.5.3. Енергія магнітного поля струму.
- •Тема 4. Електромагнітні коливання і хвилі
- •4.1. Вільні електромагнітні коливання
- •4.1.1. Коливальний контур. Власні електричні коливання
- •4.1.2. Затухаючі електричні коливання
- •4.2. Вимушені електромагніні коливання.
- •4.2.1. Вимушені електромагніні коливання
- •4.2.2. Автоколивання
- •4.2.3. Енератор незатухаючих коливань
- •4.3. Змінний струм, його характеристики і добування
- •4.3.1. Змінний електричний струм. Добування змінного струму
- •4.3.2. Діючі значення сили змінного струму і напруги
- •4.3.3. Зсув фаз між струмом 1 напругою
- •4.4. Коло змінного струму з опором, індуктивністю і ємністю. Резонанс
- •4.4.1. Коло змінного струму з опором, індуктивністю і ємністю. Резонанс
- •4.4.2. Електричний резонанс
- •4.4.3. Робота і потужність змінного струму
- •4.5. Передача і перетворенняя змінного струму. Трансформатор. Електричні станції
- •4.5.1. Передача змінного струму
- •4.5.2. Перетворення змінного струму. Трансформатор
- •4.5.3. Електричні станції
- •4.6. Електромагнітні хвилі (частина 1)
- •4.6.1. Досліди г. Герца
- •4.6.2. Винайдення радіо
- •4.6.3. Принципи радіозвязку
- •4.7. Електромагнітні хвилі (частина 2)
- •4.7.1. Інфрачервоне та ультрафіолетове випромінювання
- •4.7.2. Рентгенівське випромінювання
- •4.7.3. Шкала електромагнітних хвиль
- •Про автора
- •18000, М. Черкаси, вул. Смілянська, 2
1.1.5. Зв'язок фізики з іншими науками і технікою
Фізика як наука про природу має спільні об'єкти і методи дослідження з іншими природничими науками. На межі між фізикою і хімією виникли такі науки, як фізична хімія і хімічна фізика, між фізикою і біологією - біофізика. Широке застосування фізичних методів у геології й астрономії привело до виділення як окремих наук геофізики й астрофізики. Оскільки фізика вивчає найпростіші й найбільш загальні властивості матерії і види її рухів, її розвиток завжди помітно позначався на розвитку всіх інших наук.
Фізика тісно пов'язана з математикою. Математичні методи завжди були засобом обробки дослідних даних і вираження функціональних характеристик фізичних явищ. У процесі математичної обробки дослідних даних нерідко передбачалося і відкривалося нове у фізиці; наприклад, передбачено існування електромагнітних хвиль, хвильових властивостей частинок речовини, існування нейтронів і нейтрино тощо. Леонардо да Вінчі мав рацію, коли твердив, що ніяке людське знання не може претендувати на назву істинної науки, якщо воно не користується математичними доведеннями.
Фізичні проблеми нерідко ставили нові завдання перед математикою і стимулювали її розвиток. Багато видатних математиків зробили істотний внесок у математику і фізику одночасно, Такими були в минулому Ньютон, Ейлер і Лаплас, а в наш період М.М.Боголюбов, М.О.Лаврентьєв та ін.
Фізика тісно взаємозв'язана з філософією. Взаємозв'язки цих наук обумовлені єдністю окремого й загального у формуванні людського пізнання. Кожний учений для оцінки й осмислення окремих наукових результатів не може обійтися без зіставлення їх з навколишньою дійсністю. І справжнє осмислення цих результатів можливе тільки на засадах правильного загального погляду на природу і правильного способу мислення дослідника. Але останні - суть категорії філософії. Тому ще Ф.Енгельс у творі «Діалектика природи» переконливо показав, що дослідники природи, які ігнорують або заперечують значення філософії як науки, несвідомо нею користуються і все-таки потрапляють у полон до філософії, але нерідко - до найгіршої.
Фізика є науковою основою техніки. Академік С.І.Вавилов справедливо зазначав, що багато галузей сучасної техніки зобов'язані своїм існуванням застосуванню фізики. Таким є весь механізований транспорт - наземний, морський і повітряний, такою є вся електротехніка, теплотехніка, усі технічні застосування світла, уся автоматика й телемеханіка, значна частина будівельної техніки. У наш час можна переконатися як нові галузі фізики породжують нові галузі техніки. Наприклад, з ядерної фізики почався розвиток ядерної енергетики, фізика напівпровідників переросла у напівпровідникову техніку, така ж передісторія електронної й обчислювальної техніки, лазерної технології тощо.
Розвиток техніки, в свою чергу, сприяє вдосконаленню експериментальних методів дослідження у фізиці і дальшому її розвитку. У фізичних лабораторіях використовують прилади, виготовлені на основі найновіших досягнень техніки: мас-спектрометри, електронні мікроскопи, автоматичні лічильники й прискорювачі заряджених частинок, лазери та ін.
1.2. ЕЛЕМЕНТИ ЕЛЕКТРОСТАТИТКИ. ЗАКОН КУЛОНА. НАПРУЖЕНІСТЬ
План лекції
1.2.1. Електризація тіл
1.2.2. Заряд і поле. Поле як вид матерії
1.2.3. Взаємодія заряджених тіл. Закон Кулона
1.2.4. Напруженість електричного поля
1.2.5. Графічне відображення електричного поля
1.2.1. ЕЛЕКТРИЗАЦІЯ ТІЛ
Розділ фізики, в якому вивчається взаємодія нерухомих в заданій системі відліку заряджених тіл і властивості пов'язаних з ними полів, називають електростатикою.
Рис. 1.1. Будова атома
Ключ до розуміння електростатичних явищ дає теорія будови атома. Як відомо, атом складається з позитивно зарядженого ядра - основного носія маси та негативно заряджених частинок - електронів, які обертаються навколо ядра. Порядковий номер хімічного елемента в періодичній таблиці Д.І.Менделєєва визначається величиною заряду ядра або кількістю електронів, що перебувають в оболонці атома в його нормальному стані (рис.1.1). Стійкість атома забезпечується електричною взаємодією ядра і електронної оболонки. Проте зовнішні електрони атома, які найслабше зв'язані з ядром, можуть залишати своє ядро і переходити в сферу дії ядер інших атомів. Якщо атом захоплює додаткові електрони або втрачає їх, то він перетворюється у негативний або позитивний іон. Переходами електронів від одних тіл до інших зумовлюється електризація тіл.
У процесі електризації тертям одне тіло набуває негативно заряду, а друге - позитивного. Зрозуміло, що до тертя заряди обох знаків на тілах були в однаковій кількості, але в процесі тертя (контакту) заряджені частинки - електрони - перерозподіляються між тілами. Надлишок електронів на одному тілі робить його негативно зарядженим, недостача їх на другому тілі робить його в цілому позитивно зарядженим. Негативний заряд одного тіла точно дорівнює за величиною позитивному заряду другого тіла. Це положення відоме під назвою закону збереження електричного заряду: електричні заряди не виникають і не зникають, вони можуть лише передаватися від одного тіла до іншого або перемішуватися всередині даного тіла. Тому алгебраїчна сума зарядів, які виникають у будь-якому електричному процесі на всіх тілах, що беруть участь у цьому процесі, завжди дорівнює нулю. Тіла, наелектризовані різнойменно, притягуються, а однойменно – відштовхуються.