
- •Тема 1. Електричне поле 7
- •1.1. Фізика і її зв’язок з іншими науками і технікою.
- •Тема 2. Постійний струм 27
- •Тема 3. Магнітне поле. Електромагнітна індукція 53
- •3.4. Електромагнітна індукція. Закон електромагнітної
- •Тема 4. Електромагнітні коливання і хвилі 72
- •4.4. Коло змінного струму з опором, індуктивністю і
- •4.5. Передача і перетворенняя змінного струму.
- •1.1. Фізика і її зв’язок з іншими
- •Основні поняття теорії фізики
- •1.1.3. Фізичні величини та їх вимірювання
- •1.1.4. Фізичні поняття, закони і теорії
- •1.1.5. Зв'язок фізики з іншими науками і технікою
- •1.2.2. Заряд і поле. Поле як вид матерії
- •1.2.3. Взаємодія заряджених тіл. Закон кулона
- •1.2.4. Напруженість електричного поля
- •1.2.5. Графічне відображення електричного поля
- •1.3.2. Теорема остроградського - гаусса
- •1.3.3. Застосування теореми остроградського - гаусса
- •2. Напруженість електричного поля рівномірно зарядженої сферичної поверхні.
- •1.4.2. Потенціал електричного поля. Різниця потенціалів (напруга). Еквіпотенціальні поверхні
- •1.4.3. Різниця потенціалів (напруга). Еквіпотенціальні поверхні
- •1.5.2. Діелектрики в електричному полі. Поляризація діелектриків
- •1.5.3. Особливості деяких діелектриків
- •1.6. Електроємнсь. Конденсатори. З'єднання конденсаторів
- •1.6.1. Електроємність провідника
- •1.6.2. Конденсатори та їх застосування
- •1.6.3. З’єднання конденсаторів
- •Тема 2. Постійний струм
- •2.1. Постійний струм. Опір. Закон ома
- •2.1.1. Електричний струм. Основні характеристики електричного струму
- •2.1.2. Закон ома для ділянки кола. Опір
- •2.1.3. Сторонні сили. Джерело електричного струму
- •2.1.4. Закон ом а для будь-якої ділянки і для повного кола
- •2.2. Правила кірхгофа
- •2.2.1. Розгалуження струму. Правила кірхгофа
- •2.2.2. Вимірювання сили струму. Розширення меж вимірювання амперметра.
- •2.2.3. Вимірювання напруги. Розширення меж вимірювання вольтметра.
- •2.3. Робота і потужність струму. Закон джоуля-ленца
- •2.3.1. Робота постійного електричного струму
- •2.3.2. Потужність постійного електричного струму
- •2.3.3. Теплова дія електричного струму. Закон джоуля - ленца
- •2.4. Електропровідність твердих тіл
- •2.4.1. Електричний струм в металах
- •2.4.2. Залежність опору металів від температури. Надпровдність
- •2.4.3. Поняття про квантову теорію провідності твердих тіл
- •2.5. Електричний струм в напівпровідниках
- •2.5.1. Будова й електричні властивості напівпровідників
- •2.5.2. Власна й домішкова провідність напівпровідників
- •2.5.3. Електронно-дірковий перехід
- •2.6. Термоелектричні і контактні явища
- •2.6.1. Робота виходу
- •2.6.2. Контактна різниця потенціалів. Закони вольта
- •2.6.3. Термоелектричні явища
- •2.7. Електричний струм в рідинах і газах
- •2.7.1. Електричний струм в рідинах
- •2.7.2. Електричний струм в газах
- •2.7.3. Поняття про плазму
- •2.7.4. Термоелектронна емісія
- •Тема 3. Магнітне поле. Електромагнітна індукція
- •3.1. Магнітне поле і його характеристики. Закон ампера
- •3.1.1. Магнітне поле і його характеристики
- •3.1.2. Дія магнітного поля на електричний струм. Сила ампера
- •3.1.3. Магнітне поле постійного електричного струму. Закон біо - савара - лапласа
- •3.1.4. Взаємодія двох прямих струмів
- •3.2. Дія електричного і магнітного полів на рухомий заряд
- •3.2.1. Дія магнітного поля на рухому заряджену частинку. Сила лоренца
- •3.2.2. Рух електрона в однорідному магнітному полі
- •3.2.3. Еффект холла
- •4.3. Магнітні властивості речовин
- •3.3.1. Магнетики 1 їх намагнічування
- •3.3.2. Магнітне поле в магнетиках. Діамагнетики і парамагнетики
- •3.3.3. Феромагнетики та їх властивості
- •3.3.4. Магнітні матеріали I їх застосування
- •3.4. Електромагнітна індукція. Закон електромагнітної індукції
- •3.4.1. Потік магнітної індукції (магнітний потік)
- •3.4.2. Електромагнітна індукція. Досліди фарадея
- •3.4.3. Закон ленца
- •3.4.4. Основний закон електромагнітної індукції
- •3.5. Самоіндукція. Взаємна індукція. Енергія магнітного поля струму
- •3.5.1. Явище самоіндукції. Індуктивність контуру
- •3.5.2. Явище взаємної індукції
- •3.5.3. Енергія магнітного поля струму.
- •Тема 4. Електромагнітні коливання і хвилі
- •4.1. Вільні електромагнітні коливання
- •4.1.1. Коливальний контур. Власні електричні коливання
- •4.1.2. Затухаючі електричні коливання
- •4.2. Вимушені електромагніні коливання.
- •4.2.1. Вимушені електромагніні коливання
- •4.2.2. Автоколивання
- •4.2.3. Енератор незатухаючих коливань
- •4.3. Змінний струм, його характеристики і добування
- •4.3.1. Змінний електричний струм. Добування змінного струму
- •4.3.2. Діючі значення сили змінного струму і напруги
- •4.3.3. Зсув фаз між струмом 1 напругою
- •4.4. Коло змінного струму з опором, індуктивністю і ємністю. Резонанс
- •4.4.1. Коло змінного струму з опором, індуктивністю і ємністю. Резонанс
- •4.4.2. Електричний резонанс
- •4.4.3. Робота і потужність змінного струму
- •4.5. Передача і перетворенняя змінного струму. Трансформатор. Електричні станції
- •4.5.1. Передача змінного струму
- •4.5.2. Перетворення змінного струму. Трансформатор
- •4.5.3. Електричні станції
- •4.6. Електромагнітні хвилі (частина 1)
- •4.6.1. Досліди г. Герца
- •4.6.2. Винайдення радіо
- •4.6.3. Принципи радіозвязку
- •4.7. Електромагнітні хвилі (частина 2)
- •4.7.1. Інфрачервоне та ультрафіолетове випромінювання
- •4.7.2. Рентгенівське випромінювання
- •4.7.3. Шкала електромагнітних хвиль
- •Про автора
- •18000, М. Черкаси, вул. Смілянська, 2
2.4.2. Залежність опору металів від температури. Надпровдність
Досліди показують, що для хімічно чистих металів у межах температур від Т0 = 273 К до Т=373 К (а для деяких металів, наприклад платини, в значно ширшому інтервалі температур) опір провідника лінійно залежить від температури:
, (2.38)
де R0 - опір провідника при Т0 = 273,15 К, ∆Т = Т - Т0; α - температурний коефіцієнт опору. Для хімічно чистих металів температурний коефіцієнт опору α ≈ 0,004 К-1 (близький до 1/273,15 К-1).
Якщо в піч помістити металеву спіраль з відомим опором R0 і виміряти RT, то за формулою (2.38) можна визначити температуру печі. Це покладено в основу будови й принципу дії електричного термометра.
Із зниженням температури і наближенням до абсолютного нуля опір провідників зменшується.
У деяких металів і сплавів спостерігається так зване явище надпровідності, відкрите Каммерлінг-Онессом. Воно полягає в тому, що при температурі, близькій до абсолютного нуля, електричний опір різко спадає - практично зменшується до нуля. Якщо в замкнутому колі, складеному з надпровідника, утворити електричний струм, то він циркулюватиме досить тривалий час (тижнями), практично не зменшуючись. Температура переходу в надпровідний стан для різних чистих металів різна і лежить в
інтервалі від 0,35 К (гафній) до 11,7 К (технецій).
2.4.3. Поняття про квантову теорію провідності твердих тіл
У класичній теорії електрон розглядається як матеріальна точка, що підпорядковується законам класичної механіки. Але електрон (як й інші мікрочастинки) має і корпускулярні, і хвильові властивості. Тому властивості електронів описуються квантовою механікою. Розглянемо спочатку схематично будову атома, оскільки електрони входять до його складу.
а б
Рис. 2.9. Енергетичні рівні: а - одного атома; б - кристалічної решітки.
Атом складається з позитивно зарядженого ядра, навколо якого обертаються негативно заряджені електрони. Електронна оболонка атома поділяється на окремі шари, які позначаються числами 1, 2, З, ... (головне квантове число) або окремими літерами К, L, M, ... Поділ на шари електронної оболонки атома не просторовий, а енергетичний. До певного шару належать електрони з близькими значеннями енергій. У квантовій механіці замість таких понять, як електронні шари, використовують поняття енергетичні рівні, або стани. Справа в тому, що атомні електрони можуть набувати не будь-яких довільних значень енергії, а цілком певних - дискретних, квантових значень енергії, і електронів з проміжними значеннями енергій не буває. Певному значенню енергії відповідає свій енергетичний рівень, або стан. Сукупність станів з однаковою енергією називається енергетичним рівнем. Енергетичні рівні схематично зображують системою горизонтальних ліній. На рис. (2.9, а) показано дискретні енергетичні рівні електронів ізольованого атома. Оскільки енергія електрона відносно ядра має від'ємне значення, то на схемі енергетичні рівні показані вниз від початку відліку (нуль - найбільше значення енергії). Найменше значення енергії мають електрони на рівні А (найближчому до ядра).
В
ізольованому атомі дискретні енергетичні
рівні розділені областями недозволених
значень енергії (області
,
,
і
т.д.), до яких електрони не потрапляють.
Якщо з окремих атомів або молекул
утворюється тверде тіло, то кількісні
зміни ведуть до якісних змін. Завдяки
зближенню окремих атомів між ними
виникають значні взаємодії, в результаті
чого валентні електрони окремих атомів
перестають бути зв'язаними із своїми
“господарями” й стають власністю всіх
суміжних атомів металу - вони стають
“усуспільненими” електронами. Ці
електрони й зумовлюють провідність
металів, тому їх називають електронами
провідності.
Під впливом послідовних електричних полів, зв'язаних з вузлами кристалічної решітки, первісні атомні енергетичні рівні розщеплюються на стільки додаткових енергетичних рівнів, скільки взаємодіє атомів. Тому кожний первісний енергетичний рівень розширюється в енергетичну смугу, або енергетичну зону (рис. 2.9, б). Це дозволені енергетичні зони; енергії електронів можуть бути лише в межах цих зон. Між дозволеними зонами А, В, С є заборонені зони , , , в яких електрони не можуть перебувати.
Розподіл електронів за енергетичними рівнями підпорядкований квантовій статистиці Фермі - Дірака, в основу якої покладено принцип заборони Паулі: у будь-якій системі електронів не може бути одночасно більш як два електрони в однаковому стані (спіни обох електронів антипаралельні). Отже, на енергетичних рівнях розміщується не більш як два електрони з протилежними спінами (рис. 2.9, б).
Дозволені зони можуть бути заповнені електронами повністю, частково або зовсім незаповнені, як це буває на верхніх рівнях. При Т = 0 К електрони попарно (за принципом Паулі) займають найнижчі дозволені енергетичні рівні як найстійкіші. Найвищий енергетичний рівень при Т = 0 К, зайнятий електронами, називається рівнем Фермі.
Найбільшу
енергію при Т
= 0 К мають електрони на рівні Фермі (цю
енергію ще називають хімічним потенціалом
і позначають літерою
).
Енергетичний інтервал у межах дозволеної
зони між сусідніми рівнями малий
(приблизно 10~22еВ),
але ширина зони порівняно велика -
становить кілька електрон-вольтів.
Такого самого порядку і ширина заборонених
зон (див. рис. 2.9, б). Тому міжзонний перехід
електронів на вищі енергетичні рівні
утруднений, значно легший внутрішньозонний
перехід (між сусідніми рівнями в межах
дозволеної зони).
У металах верхня дозволена енергетична зона заповнена частково і біля рівня Фермі є вільні місця, то під дією поля електрони переходитимуть з нижчих енергетичних рівнів на вакантні й утворюватимуть електричний струм
У діелектриків верхня енергетична зона заповнена повністю, ширина забороненої зони значна і утруднює перехід електронів у верхню вільну дозволену зону – отже електричного струму не буде.