Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
91
Добавлен:
02.05.2014
Размер:
413.7 Кб
Скачать

Пример 2.3. Определить касательное напряжение в точке А, если

max = 50 МПа.

Решение. Касательные напряжения в поперечном сечении распреде-

Рис. 2.8

ляются по линейному закону, поэтому

A/max = A/max = dв/dн = 0,8,

откуда A = 0,8max =0,850 = 40 МПа.

Пример 2.4. Как изменятся наибольшее касательное напряжение max и жесткость вала, если площадь поперечного сечения увеличить в 2 раза?

Решение. Соотношение наибольших касательных напряжений .

С другой стороны, А2/A1 = (d2/d1)2  2, откуда . Следовательно, 1/2 = 23/2 = 2,83 раза. Как видим, наибольшее касательное напряжение уменьшится в 2,83 раза.

Соотношение жесткостей

,

т.е. жесткость вала возрастет в 4 раза.

Пример 2.5. Определить отношение диаметров двух валов из одинакового материала, передающих одинаковую мощность, если один делает П1 = 50 об/мин, а другой – П2 = 400 об/мин.

Решение. Скручивающий момент М связан с мощностью Р известным соотношением М = Р/. Искомый диаметр из условия прочности равен . Учитывая, что в данном случае МК = М, находим и . Отношение диаметров . Как видим, увеличение скорости вращения при неизменной мощности, передаваемой валом, приводит к уменьшению диаметра и, как следствие, его массы.

Пример 2.6. Два вала одинаковой длины и массы изготовлены из одного и того же материала. Один вал полый ( = 0,8), а другой – сплошной. Сравнить грузоподъемность валов при одинаковом допускаемом напряжении. Определить, насколько уменьшится масса полого вала, если его сделать равнопрочным сплошному при одинаковой грузоподъемности.

Решение. 1. Сравнение грузоподъемности сплошного и полого валов одинаковой массы. Вычисляем массы валов:

  • полого ,

  • сплошного .

Если массы равны, то А1 = А2 и (dн/d)2 = 1/(1-2). (а)

Из условия прочности находим грузоподъемности валов:

(б)

откуда их отношение (в)

Подставляя (а) в (в), окончательно получим

.

Следовательно, грузоподъемность полого вала при равной массе в 2,73 раза выше, чем сплошного.

2. Сравнение массы полого и сплошного валов одинаковой прочности и грузоподъемности. При одинаковой прочности и грузоподъемности из (б) имеем

, (г)

Отношение масс полого и сплошного валов

или с учетом (г) .

Как видим, экономия материала достигает 49 %.

Пример 2.7. Считая величину момента М1 известной, определить при заданном соотношении диаметров ступенчатого вала величину момента М2 из условия равнопрочности тонкой и толстой частей.

Рис. 2.9

Решение

Из эпюры МК имеем , . (а)

При равнопрочности частей или

,

откуда .

Следовательно, с учетом (а): М1 + М2 = 8М1 и М2 = 7М1.

Пример 2.8. Сплошной вал скручивается момен-

Рис. 2.10

тами М, приложенными к его концам. На поверхности вала под углом 45 к его оси установлен тензометр с базой s = 20 мм и увеличением,

равным k = 1000. Определить модуль сдвига материала, если при увеличении крутящего момента на величину МК = 16 кНм приращение показаний тензометра составило П = 10 мм. Диаметр вала равен d = 10 см.

Решение. Относительная деформация в направлении базы тензометра исходя из показаний последнего равна

. (а)

При кручении главные напряжения равны: 1 = , 2 = 0, 3 = -, поэтому на основании закона Гука

1 = (1 - 3)/E = (1 + )/E (б)

или 1 = /(2G). С другой стороны,  = МК/wp. (в)

Приравнивая (а) и (б), с учетом (в) получим

n/(KS) = MK/(wp2G).

Отсюда

G = MKKS/(n2wp) =

= 161031032010-3/(1010-320,210310-6)= 80 ГПа.

Пример 2.9

Определить величину момента, вызывающего разрушение чугунного вала, если d = 75 мм, пчр = 150 МПа, пчс = 600 МПа.

Решение

Рис. 2.11

Учитывая, что чугун является хрупким материалом, воспользуемся гипотезой прочности О.Мора, согласно которой , где m = пчр /пчс = 0,25. При кручении 1 = Мпред/wp, 2 = 0, 3 = -1. Из условия прочности или Мпред(1 + m)/wp = пчр находим искомый разрушающий момент

Мпред = пчр wp/(1+m) = 1501060,27,5310-6/(1+0,25) = 10 кНм.

Рис. 2.12

Пример 2.10.

Определить из расчета на прочность допускаемое значение М, если  = 45 МПа, d = 10 см.

Решение

1. Определение реакций опор. Задача является стати-

чески неопределимой, поэтому в дополнение к уравнению статики mz = 0, MB - MA + 3M - 4M = 0, необходимо составить уравнение перемещений ВА = 0,

,

откуда МВ = (7/4) М, а из уравнения статики МА = (3/4) М. Далее строим эпюру МК, из которой определяем МК max = (9/4) М.

2. Определение допустимого значения момента М. Из условия прочности имеем max = MK max/Wp = (9/4)M/Wp  ,

откуда М = (4/9)Wp = (4/9)0,210310-645106 = 4 кНм.

3. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНЫХ СЕЧЕНИЙ СТЕРЖНЕЙ

В расчетах конструкций на механическую надежность очень часто приходится оперировать такими характеристиками плоских фигур, как статический момент, осевой и полярный моменты инерции. Хотя вычисление вышеназванных геометрических характеристик относится к числу простейших задач интегрального исчисления, тем не менее, в силу их узкого прикладного значения они практически не рассматриваются во втузовском курсе высшей математики. По установившейся традиции геометрические характеристики плоских фигур изучаются в курсе сопротивления материалов.

    1. Статические моменты.

Определение положения центра тяжести

Рис. 3.1

Выражения

, (3.1)

называются статическими моментами площади относительно осей u и v (рис. 3.1). Статический момент имеет размерность L3. Через

статические моменты определяются координаты центра тяжести (точка С) сечения:

, . (3.2)

Из формул (3.2) вытекает, что статические моменты относительно осей , проходящих через центр тяжести (центральные оси), равны нулю: S = 0, S = 0.

В тех случаях, когда сечение может быть разбито на простейшие составные части, площади и координаты центров тяжести которых известны, положение центра тяжести всего сечения определяют по формулам

, , (3.3)

где Аi – площадь i-й части сечения (i = 1,2,3,…,П); ui и vi – координаты ее центра тяжести.

Для сечений, составленных из профилей стандартного проката, площадь каждого профиля и остальные необходимые для расчетов размеры принимаются по таблицам ГОСТов на прокатную сталь.

Пример 3.1. Определить положение центра тяжести сечения, приведенного на рисунке (размеры даны в см).

Решение

Разбиваем сечение на три прямоугольника и выбираем вспомогательные оси uv (рис. 3.2).

86

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке Rucov2