Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по общей химии.doc
Скачиваний:
114
Добавлен:
17.11.2019
Размер:
11.7 Mб
Скачать

4.3. Гидроксиды

Среди многоэлементных соединений важную группу составляют гидроксиды – сложные вещества, содержащие гидроксогруппы OH. Некоторые из них (основные гидроксиды) проявляют свойства оснований - NaOH, Ba(OH)2 и т.п.; другие (кислотные гидроксиды) проявляют свойства кислот – HNO3, H3PO4, и др.; существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как основные, так и кислотные свойства - Zn(OH)2, Al(OH)3 и др.

Свойства и характер гидроксидов также находятся в зависимости от заряда ядра центрального атома (условное обозначение Э) и его радиуса, т.е. от прочности и полярности связей Э – О и О – Н.

Если энергия связи EO - H  EЭ - О, то диссоциация гидроксида протекает по кислотному типу , т. е. разрушается связь О – Н.

ЭОН  ЭО- + H+

Если EO-H  EЭ – O, то диссоциация гидроксида протекает по основному типу , т. е. разрушается связь Э - O

ЭOH  Э+ + OH-

Если энергии связей O – H и Э – О близки или равны, то диссоциация гидроксида может протекать одновременно по обоим направлениям. В этом случае речь идет об амфотерных гидроксидах :

Эn+ + nOH-  Э(OH)n = HnЭOn  nH+ + ЭОnn-

В соответствии с изменением химической природы элементов в периодической системе элементов закономерно изменяется кислотно-основная активность их гидроксидов: от основных гидроксидов через амфотерные к кислотным. Например, для высших гидроксидов элементов 3 периода:

NaOH, Mg(OH)2 – основания (слева направо основные свойства ослабевают);

Al(OH)3 – амфотерный гидроксид;

H2SiO3, H3PO4, H2SO4, HСlO4 – кислоты (слева направо сила кислот увеличивается).

Гидроксиды металлов относятся к основаниям. Чем ярче выражены металлические свойства элемента, тем сильнее выражены основные свойства соответствующего гидроксида металла в высшей с.о. Гидроксиды неметаллов проявляют кислотные свойства. Чем ярче выражены неметаллические свойства элемента, тем сильнее кислотные свойства соответствующего гидроксида.

4.4. Кислоты

Кислоты – это вещества, диссоциирующие в растворах с образованием катионов водорода и анионов кислотного остатка (с позиций теории электролитической диссоциации).

Кислоты классифицируют по их силе (по способности к электролитической диссоциации – на сильные и слабые), по основности (по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли – на одноосновные, двухосновные, трехосновные), по наличию или отсутствию кислорода в составе кислоты (на кислородсодержащие и бескислородные). Например, азотная кислота HNO3 – сильная, одноосновная, кислородсодержащая кислота; сероводородная кислота H2S – слабая, двухосновная, бескислородная кислота.

Химические свойства кислот:

  1. Взаимодействие с основаниями с образованием соли и воды (реакция нейтрализации):

H2SO4 + Cu (OH)2 = CuSO4 + 2H2O.

  1. Взаимодействие с основными и амфотерными оксидами с образованием солей и воды:

2HNO3 + MgO = Mg(NO3)2 + H2O,

H2SO4 + ZnO = ZnSO4 + H2O.

  1. Взаимодействие с металлами. Металлы, стоящие в “Ряду напряжений” до водорода, вытесняют водород из растворов кислот (кроме азотной и концентрированной серной кислот); при этом образуется соль:

Zn + 2HCl =ZnCl2 + H2 .

Металлы, находящиеся в “Ряду напряжений” после водорода, водород из растворов кислот не вытесняют

Cu + 2HCl ≠.

Взаимодействие металлов с азотной и концентрированной серной кислотами см. в разделе 11.

  1. Некоторые кислоты при нагревании разлагаются:

H2SiO3 H2O + SiO2.

  1. Менее летучие кислоты вытесняют более летучие кислоты из их солей:

H2SO4конц + NaClтв = NaHSO4 + HCl↑.

  1. Более сильные кислоты вытесняют менее сильные кислоты из растворов их солей:

2HCl + Na2CO3 = 2NaCl + H2O + CO2

Номенклатура кислот. Названия бескислородных кислот составляют, добавляя к корню русского названия кислотообразующего элемента (или к названию группы атомов, например, CN – циан, CNS – родан) суффикс -о-, окончание водородная и слово “кислота”. Например, HCl – хлороводородная кислота, H2S – сероводородная кислота, HCN – циановодородная кислота.

Названия кислородосодержащих кислот также образуются от русского названия кислотообразующего элемента с добавлением соответствующих суффиксов, окончаний и слова “кислота”. При этом название кислоты, в которой элемент находится в высшей степени окисления, оканчивается на -ная или -овая; например, H2SO4 – серная кислота, HClO4 – хлорная кислота, H3AsO4 – мышьяковая кислота. С понижением степени окисления кислотообразующего элемента окончания изменяются в следующей последовательности: -оватая (HClO3 - хлорноватая кислота), истая (HClO2 - хлористая кислота), -оватистая (HClO - хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисления, то название кислоты, отвечающее более низкой степени окисления элемента, имеет окончание истая (HNO3 – азотная кислота, HNO2 – азотистая кислота).

В некоторых случаях к одной молекуле оксида может присоединиться различное количество молекул воды (т.е. элемент в одной и той же степени окисления образует несколько кислот, содержащих по одному атому данного элемента). Тогда кислоту с большим содержанием воды обозначают приставкой орто- , а кислоту с меньшим числом молекул воды обозначают приставкой мета- . Например :

P2O5 + H2O = 2HPO3 - метафосфорная кислота;

P2O5 + 3H2O = 2H3PO4 - ортофосфорная кислота.