- •Г.К.Севастьянова, т.М.Карнаухова Общая химия
- •1. Основные понятия и законы химии
- •1.1. Определение химии. Предмет химии. Её связь с другими науками. Значение химии в изучении природы и развитии техники.
- •1.2. Основные понятия химии
- •1.3. Основные законы химии
- •2. Современная теория строения атома. Периодический закон и система элементов д.И. Менделеева
- •2.1. Общие положения
- •2.2. Развитие представлений о строении атома
- •2.3. Квантово – механическая модель атома водорода. Исходные представления квантовой механики
- •2.4. Модель состояния электрона в атоме
- •2.5. Квантовые числа
- •2.6. Электронные конфигурации (формулы) элементов
- •2.7. Порядок заполнения электронами уровней, подуровней, орбиталей в многоэлектронных атомах
- •2.8. Электронные семейства элементов
- •2.9. Понятие об электронных аналогах
- •2.10. Периодический закон и периодическая система элементов д.И. Менделеева
- •2.11. Структура периодической системы химических элементов д. И. Менделеева
- •2.12. Периодическая система д.И. Менделеева и электронная структура атомов
- •2.13. Периодичность свойств элементов
- •3.Химическая связь и строение молекул
- •3.1. Основные понятия и определения
- •3.2. Теория метода валентных связей
- •3.3. Ковалентная связь
- •3.4. Насыщаемость ковалентной связи
- •3.5. Направленность ковалентной связи
- •3.6. Полярность и поляризуемость химической связи
- •3.7. Полярность молекул (типы ковалентных молекул)
- •3.8. Ионная связь
- •3.9. Металлическая связь
- •4. Основные классы неорганических соединений
- •4.1. Классификация веществ
- •4.2. Оксиды
- •4.3. Гидроксиды
- •4.4. Кислоты
- •4.5. Основания
- •4.6. Соли
- •5. Энергетика и направленность химических процессов (элементы химической термодинамики)
- •5.1 Основные понятия и определения.
- •5.2. Первый закон термодинамики
- •5.3. Тепловой эффект химической реакции. Термохимия. Закон Гесса
- •5.4. Энтропия
- •5.5. Свободная энергия Гиббса
- •5.6. Свободная энергия Гельмгольца
- •6. Химическая кинетика
- •6.1. Основные понятия химической кинетики
- •6.2. Влияние природы реагирующих веществ
- •6.3. Закон действующих масс
- •6.4. Зависимость скорости химической реакции от температуры
- •6.5. Влияние катализатора
- •7. Химическое равновесие
- •7.1. Общие представления о химическом равновесии. Константа химического равновесия
- •7.2. Смещение химического равновесия. Принцип Ле Шателье
- •7.3. Фазовые равновесия. Правило фаз Гиббса
4. Основные классы неорганических соединений
4.1. Классификация веществ
Все вещества делятся на простые (элементарные) и сложные. Простые вещества состоят из одного элемента, сложные – из двух и более элементов. Простые вещества разделяются на металлы и неметаллы.
Металлы имеют характерный «металлический» блеск, обладают ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы (кроме ртути) находятся в твердом состоянии.
Неметаллы не обладают характерным для металлов блеском, хрупки, очень плохо проводят теплоту и электричество. Некоторые из них при обычных условиях газообразны.
Сложные вещества делят на органические и неорганические (минеральные). Органическими принято называть соединения углерода, за исключением простейших соединений углерода (CO, CO2, H2CO3, HCN и их солей и др.); все остальные вещества называются неорганическими.
Сложные неорганические соединения классифицируются как по составу, так и по химическим свойствам (функциональным признакам). По составу они, прежде всего, подразделяются на двухэлементные, или бинарные, соединения (оксиды, сульфиды, галогениды, нитриды, карбиды, гидриды) и многоэлементные соединения; кислородсодержащие, азотсодержащие и т. п.
По химическим свойствам неорганические соединения подразделяются на четыре основных класса: оксиды, кислоты, основания, соли.
4.2. Оксиды
Оксидами называются сложные вещества, состоящие из двух элементов, один из которых кислород (Cr2O3, K2O, CO2 и т. д.). Кислород в оксидах всегда двухвалентен и имеет степень окисления, равную -2.
По химическим свойствам оксиды подразделяются на солеобразующие и несолеобразующие (безразличные: CO, NO, N2O). Солеобразующие оксиды подразделяются на основные, кислотные и амфотерные.
Основными называются оксиды, взаимодействующие с кислотами или кислотными оксидами, с образованием солей:
CuO + 2HCl=CuCl2 + H2O,
MgO + CO2 = MgCO3.
Образование основных оксидов характерно для металлов с невысокой степенью окисления (+1, +2).
Оксиды щелочных (Li, Na, K, Rb, Cs) и щелочноземельных металлов (Ca, Sr, Ba, Ra) взаимодействуют с водой, образуя основания. Например:
Na2O + H2O = 2NaOH,
CaO + H2O = Ca(OH)2.
Большая часть основных оксидов с водой не взаимодействует. Основания таких оксидов получают косвенным путем:
a) CuO + 2HCl=CuCl2 + H2O;
б) CuCl2 + 2KOH = Cu(OH)2 +2KCl.
Кислотными называются оксиды, взаимодействующие с основаниями или с основными оксидами с образованием солей. Например:
SO3 + 2KOH = K2SO4 + H2O,
CaO + CO2 = CaCO3.
К кислотным оксидам относятся оксиды типичных неметаллов -SO2, N2O5, SiO2, CO2 и др., а также оксиды металлов с высокой степенью окисления (+5,+6,+7, +8)-V2O5 , CrO3 , Mn2O7 и др .
Ряд кислотных оксидов (SO3 , SO2 , N2O3 , N2O5 , CO2 и др.) при взаимодействии с водой образуют кислоты:
SO 3 + H2O = H2SO4,
N2O5 + H2O = 2HNO3.
Соответствующие кислоты других кислотных оксидов (SiO2 , TeO2 , TeO3 , MoO3 , WO3 , и др. ) получают косвенным путем. Например:
а) SiO2 + 2NaOH = Na2SiO3 + H2O
б) Na2SiO3 +2HCl= H2SiO3 + 2NaCl
Один из способов получения кислотных оксидов – отнятие воды от соответствующих кислот. Поэтому кислотные оксиды иногда называют ангидридами кислот.
Амфотерными называют оксиды, образующие соли при взаимодействии, как с кислотами, так и с основаниями, т. е. обладающие двойственными свойствами – свойствами основных и кислотных оксидов. Например:
SnO + H2SO4 = SnSO4 + H2O,
SnO + 2KOH + H2O = K2 [Sn(OH)4],
ZnO + 2KOH = K2ZnO2 + H2O3.
К числу амфотерных оксидов относятся: ZnO, BeO, SnO, PbO, Al2O3, Cr2O3, Fe2O3, Sb2O3, MnO2 и др.
Следует отметить, что в соответствии с изменением химической природы элементов в периодической системе элементов (от металлов к неметаллам) закономерно изменяются и химические свойства соединений, в частности, кислотно-основная активность их оксидов. Так, в случае высших оксидов элементов 3 периода в ряду: Na2O, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7 - по мере уменьшения степени полярности связи Э-О (уменьшается ЭО; уменьшается отрицательный эффективный заряд атома кислорода) ослабляются основные и нарастают кислотные свойства оксидов: Na2O, MgO - основные оксиды; Al2O3 – амфотерный; SiO2, P2O5, SO3, Cl2O7 - кислотные оксиды (слева направо кислотный характер оксидов усиливается).
Способы получения оксидов:
1. Взаимодействие простых веществ с кислородом (окисление):
4Fe + 3O2 = 2Fe2O3,
S + O2 = SO2.
2. Горение сложных веществ:
CH4 + 2O2 = CO2 + 2H2O,
2SO2 + O2 = 2SO3.
3. Термическое разложение солей, оснований, кислот:
CaCO3 CaO + CO2,
Cd(OH)2 CdO + H2O,
H2SO4 SO3 + H2O.
Номенклатура оксидов. Названия оксидов строятся из слова “оксид” и названия элемента в родительном падеже, который соединен с атомами кислорода. Если элемент образует несколько оксидов, то в скобках римскими цифрами указывается его степень окисления (с.о.), при этом знак с. о. не указывается. Например, MnO2 – оксид марганца (IV), MnO – оксид марганца (II). Если элемент образует один оксид, то его с. о. не приводится: Na2O – оксид натрия.
Иногда в названиях оксидов встречаются приставки ди-, три-, тетра- и т.д. Они обозначают, что в молекуле этого оксида на один атом элемента приходится 2,3,4 и т.д. атома кислорода, например, CO2 – диоксид углерода и т.д.