
- •Содержание
- •Часть I. Природный газ (пг) 9
- •Часть II. Сжиженный углеводородный газ (суг) 207
- •Часть I. Природный газ (пг)
- •1. Основные физические свойства природных газов
- •1.1. Горючие газы, используемые для газоснабжения
- •1.2. Основные физические свойства газов
- •Контрольные вопросы:
- •2. Основные сведения о газораспределительных системах
- •2.1. Общие понятия о газораспределительных системах
- •2.2. Классификация газопроводов
- •2.3. Системы газоснабжения
- •2.4. Потребители и режимы потребления газа
- •Контрольные вопросы:
- •3. Газораспределительные станции (грс)
- •3.1. Классификация и структура грс
- •3.2. Генплан и технологические схемы грс
- •Основные технические данные
- •3.3. Проектирование грс по узлам
- •3.3.1. Расчет узла редуцирования
- •3.3.2. Расчет узла очистки газа
- •3.3.3. Расчет узла предотвращения гидратообразования
- •3.3.4. Расчет узла учета количества газа
- •3.3.5. Расчет узла переключения
- •3.3.6. Расчет узла одоризации
- •3.3.7. Система автоматики и контрольно-измерительные приборы грс
- •3.4. Организация эксплуатации и обслуживания грс
- •3.4.1. Эксплуатация грс
- •3.4.2. Техническое обслуживание грс
- •3.4.3. Ремонт грс
- •3.4.4. Техническое диагностирование грс
- •Контрольные вопросы
- •4. Газорегуляторные пункты
- •4.1. Классификация и оборудование грп
- •Пункты газорегуляторные шкафные
- •Промышленные счетчики газа турбинные
- •Технические характеристики газовых фильтров грп
- •4.2. Регулирование давления на грс и грп
- •Принципиальное устройство регуляторов давления
- •4.3. Выбор оборудования грп, гру
- •4.3.1. Выбор регулятора давления
- •4.3.2. Выбор фильтра
- •4.4. Сезонное регулирование давления газа на выходе грп
- •5. Газовая распределительная сеть
- •5.1. Категории потребителей и режимы потребления газа
- •5.2. Расчетные расходы газа
- •5.2.1. Годовые расходы газа
- •5.2.2. Расчётные часовые расходы
- •5.3. Расчёт диаметра газопровода и допустимых потерь давления
- •5.4. Гидравлический расчёт простых газопроводов высокого, среднего и низкого давления
- •5.4.1. Газопроводы высокого и среднего давления
- •5.4.2. Газопроводы низкого давления
- •5.5. Методы расчёта тупиковой распределительной сети
- •5.5.1. Традиционный метод расчета тупиковой сети
- •5.5.2. Метод оптимальных диаметров
- •5.5.3. Комбинированный метод расчета тупиковой газораспределительной сети
- •5.5.4. Сравнительный анализ методик распределения расчетного перепада давления
- •5.6. Гидравлический расчёт кольцевых распределительных сетей Методика расчета кольцевых сетей
- •Методика гидравлической увязки кольцевой сети
- •5.7. Наружные газопроводы. Трубы и арматура
- •5.7.1. Пересечения газопроводов с различными препятствиями
- •5.9. Контрольная трубка с футляром:
- •5.7.2. Трубы и их соединения
- •5.7.3. Газовая арматура и оборудование
- •5.7.4. Приемка и ввод газопроводов в эксплуатацию
- •5.8. Внутренние устройства системы газораспределения
- •5.8.1. Устройство внутренних газопроводов
- •5.8.2..Бытовые газовые приборы
- •6. Хранилища природного газа и газозаправочные станции
- •6.1. Методы компенсации колебаний расхода газа
- •6.2. Газгольдеры
- •6.3. Аккумулирующая способность магистрального газопровода
- •6.4. Подземное хранение газа
- •6.4.1. Общие сведения по пхг
- •6.4.2. Общие требования
- •6.4.3. Организация эксплуатации
- •6.4.4. Техническое обслуживание и ремонт
- •Часть II. Сжиженный углеводородный газ (суг)
- •7. Общие сведения о сжиженных углеводородных газах
- •7.1. Компоненты суг
- •7.2. Маркировка и технические условия суг
- •7.3. Законы, константы и соотношения суг Законы идеального газа
- •Специфические особенности свойств сжиженных углеводородных газов (суг)
- •Отклонение реальных газов от идеального газа
- •8. Транспорт сжиженных углеводородных газов
- •8.1. Перевозка сжиженного газа автотранспортом
- •8.1.1. Перевозка сжиженных углеводородных газов в автоцистернах
- •8.2. Перевозка сжиженных газов по железным дорогам
- •8.2.1. Конструкция и техническая характеристика цистерн
- •8.2.2. Перевозка сжиженных газов по железным дорогам в крытых вагонах
- •Техническая характеристика цистерн, применяющихся за рубежом
- •8.3. Перевозка сжиженных углеводородных газов водным путем
- •8.3.1. Перевозка сжиженных углеводородных газов по морю
- •8.3.2. Перевозка сжиженных газов речным транспортом
- •8.4. Перевозка сжиженных углеводородных газов авиатранспортом
- •8.5. Транспортировка сжиженных углеводородных газов по трубопроводам
- •Контрольные вопросы:
- •9. Хранение сжиженных углеводородных газов
- •9.1. Способы хранения
- •9.1.1. Хранение при переменной температуре и высоком давлении
- •9.1.2. Хранение при постоянной температуре и низком давлении
- •9.2. Резервуары для хранения сжиженных углеводородных газов под давлением
- •9.2.1. Хранение сжиженных газов в стальных резервуарах под давлением
- •Допускаемый вакуум определяется из выражения
- •9.2.2. Подземные хранилища шахтного типа
- •9.2.3. Подземные хранилища в отложениях каменной соли
- •9.3. Эксплуатация подземных хранилищ в отложениях каменной соли
- •9.4. Низкотемпературное хранение сжиженных газов в наземных резервуарах
- •9.4.1. Конструкции низкотемпературных резервуаров
- •9.4.2. Низкотемпературное хранение сжиженных газов в подземных ледопородных резервуарах
- •9.5. Техническая и экономическая оценки существующих способов хранения сжиженных углеводородных газов
- •Контрольные вопросы:
- •10. Газонаполнительные станции сжиженных углеводородных газов
- •10.1. Назначение и размещение
- •10.2. Схемы и устройства гнс сжиженных газов
- •10.3. Типовые гнс сжиженных газов
- •10.4. Автоматизация и механизация процессов налива, слива и транспортировки баллонов
- •10.5. Характеристики насосов и компрессоров
- •10.6. Анализ методов перемещения сжиженных углеводородных газов
- •10.7. Использование сжиженных углеводородных газов в коммунально-бытовой газификации
- •10.7.1. Общие положения. Удельные расходы газа
- •10.7.2. Бытовые газобаллонные установки
- •Скобы …......……………………………………….. 2
- •Изоляция……………………………………...........8г
- •10.8. Заправка автомобилей сжиженными углеводородными газами
- •Контрольные вопросы:
- •11. Резервуарные и баллонные установки газоснабжения
- •11.1. Регазификация сжиженных углеводородных газов
- •11.1.1. Естественная регазификация
- •11.1.2. Искусственная регазификация
- •11.2. Резервуарные и баллонные установки с естественным и искусственным испарением [3, 10]
- •Список литературы
8.3. Перевозка сжиженных углеводородных газов водным путем
8.3.1. Перевозка сжиженных углеводородных газов по морю
Важнейшей проблемой международной торговли сжиженными газами как сырьем для химической промышленности и топливом является способ доставки их из районов добычи в районы потребления. Страны, не имеющие собственных значительных месторождений газа и разделенные морскими бассейнами, например Япония, страны Западной Европы и другие, вынуждены прибегать к услугам морского транспорта. В некоторых случаях морские перевозки сжиженных газов и в пределах одной страны являются наиболее целесообразным и экономичным видом транспорта. Проблема доставки сжиженных газов морем стала особенно, актуальной в последние годы в связи с бурным ростом потребления газов в областях, достаточно удаленных от мест добычи. [8]
Первые сведения о перевозках сжиженных газов по морю относятся к 1929÷1931 гг., когда некоторые европейские и американские компании начали переоборудовать суда под танкеры для транспортировки сжиженных углеводородных газов.
Первое судно для транспортировки бутана «Агнита» было построено в Англии в 1931 г. В 40-х годах со стапелей сошли танкеры: греческий «Медгаз» в 1944 г. и японский «Too Co Мару» в 1945 г.
В России перевозки сжиженных углеводородных газов морем начались в декабре 1960 г. на танкере «Фрунзе», переоборудованном для одновременной перевозки нефтепродуктов и аммиака.
Существуют три типа судов для транспорта сжиженных углеводородных газов.
Танкеры с резервуарами под давлением. Резервуары этих танкеров рассчитываются на максимальную упругость паров продукта при +45ºC, что составляет около 0,16 МПа.
Танкеры с теплоизолированными резервуарами под пониженным давлением (полуизотермические). Сжиженный газ транспортируется при промежуточном охлаждении (от –5 до +5ºС) и пониженном давлении (0,3÷0,6 МПа).
Танкеры с теплоизолированными резервуарами под давлением, близким к атмосферному (изотермические). В изотермических танкерах сжиженные газы транспортируются при давлении, близком к атмосферному, и низкой отрицательной температуре (–40ºС для пропана, аммиака; –103ºС для этилена и –161ºС для сжиженного природного газа).
По форме устанавливаемых на танкере резервуаров газовозы могут быть разделены на танкеры, оборудованные сферическими, цилиндрическими и прямоугольными резервуарами.
Танкеры с резервуарами под давлением. Вес грузовых резервуаров значительно превышает вес аналогичных устройств при других способах перевозки сжиженных газов, что соответственно увеличивает резервы и стоимость судна.
Грузоподъемность резервуаров до 2000 м3. Производительность налива-слива 30÷200 т/ч. Применяются при сравнительно небольших грузопотоках и отсутствии специального оборудования на береговых базах и танкерах.
Полуизотермические танкеры характеризуются универсальностью приема с береговых баз сжиженного газа при разнообразных температурных параметрах. В связи с уменьшением массы грузовых резервуаров и возможностью придания им прямоугольной формы уменьшаются размеры танкера, и улучшается использование объема резервуаров. Вместимость резервуаров от 2000 до 13000 м3. Производительность налива-слива 100÷420 т/ч. Применяются эти танкеры при значительных грузооборотах и при наличии соответствующего оборудования на береговых базах и танкерах.
Изотермические танкеры являются наиболее совершенными, они позволяют увеличить производительность слива-налива и соответственно пропускную способность береговых баз и оборачиваемость флота. Вместимость резервуаров свыше 10000 м3. Производительность слива-налива 500÷1000 т/ч и более. Характеризуются большими размерами и применяются при значительных грузооборотах. [3]
Выбор способа транспортировки газа зависит от ряда технических и экономических факторов, связанных не только с размерами и конструкцией судна, но и с условиями хранения сжиженного газа на берегу.
Полуизотермические танкеры имеют ряд преимуществ перед танкерами, перевозящими газ в резервуарах высокого давления. Так как плотность сжиженного газа увеличивается с понижением его температуры, объем резервуаров у полуизотермических танкеров при заданной грузоподъемности будет меньше. Из-за уменьшения расчетного давления газа снизится вес резервуаров. Резервуар для пропана вместимостью 1000 м3, рассчитанный на перевозку сжиженного газа под давлением, весит около 300 т. Полуизотермический резервуар такой же вместимости с температурой газа +5ºС и при пониженном давлении весит 120 т, и стоимость его примерно на 40% меньше. Кроме того, на полуизотермических газовозах лучше используется объем трюма, так как теплоизолированным резервуарам, находящимся при пониженном давлении, можно придавать форму, в наибольшей степени соответствующую обводам судна.
Для изотермических танкеров указанные показатели выше, чем для полуизотермических. Однако перевозка газа в изотермических танкерах требует оборудования портов отправления и приема низкотемпературными резервуарами для хранения сжиженного газа и теплоизолированными трубопроводами для его перекачки. Затраты на такое оборудование эффективны при больших грузопотоках сжиженного газа.