
- •Содержание
- •Часть I. Природный газ (пг) 9
- •Часть II. Сжиженный углеводородный газ (суг) 207
- •Часть I. Природный газ (пг)
- •1. Основные физические свойства природных газов
- •1.1. Горючие газы, используемые для газоснабжения
- •1.2. Основные физические свойства газов
- •Контрольные вопросы:
- •2. Основные сведения о газораспределительных системах
- •2.1. Общие понятия о газораспределительных системах
- •2.2. Классификация газопроводов
- •2.3. Системы газоснабжения
- •2.4. Потребители и режимы потребления газа
- •Контрольные вопросы:
- •3. Газораспределительные станции (грс)
- •3.1. Классификация и структура грс
- •3.2. Генплан и технологические схемы грс
- •Основные технические данные
- •3.3. Проектирование грс по узлам
- •3.3.1. Расчет узла редуцирования
- •3.3.2. Расчет узла очистки газа
- •3.3.3. Расчет узла предотвращения гидратообразования
- •3.3.4. Расчет узла учета количества газа
- •3.3.5. Расчет узла переключения
- •3.3.6. Расчет узла одоризации
- •3.3.7. Система автоматики и контрольно-измерительные приборы грс
- •3.4. Организация эксплуатации и обслуживания грс
- •3.4.1. Эксплуатация грс
- •3.4.2. Техническое обслуживание грс
- •3.4.3. Ремонт грс
- •3.4.4. Техническое диагностирование грс
- •Контрольные вопросы
- •4. Газорегуляторные пункты
- •4.1. Классификация и оборудование грп
- •Пункты газорегуляторные шкафные
- •Промышленные счетчики газа турбинные
- •Технические характеристики газовых фильтров грп
- •4.2. Регулирование давления на грс и грп
- •Принципиальное устройство регуляторов давления
- •4.3. Выбор оборудования грп, гру
- •4.3.1. Выбор регулятора давления
- •4.3.2. Выбор фильтра
- •4.4. Сезонное регулирование давления газа на выходе грп
- •5. Газовая распределительная сеть
- •5.1. Категории потребителей и режимы потребления газа
- •5.2. Расчетные расходы газа
- •5.2.1. Годовые расходы газа
- •5.2.2. Расчётные часовые расходы
- •5.3. Расчёт диаметра газопровода и допустимых потерь давления
- •5.4. Гидравлический расчёт простых газопроводов высокого, среднего и низкого давления
- •5.4.1. Газопроводы высокого и среднего давления
- •5.4.2. Газопроводы низкого давления
- •5.5. Методы расчёта тупиковой распределительной сети
- •5.5.1. Традиционный метод расчета тупиковой сети
- •5.5.2. Метод оптимальных диаметров
- •5.5.3. Комбинированный метод расчета тупиковой газораспределительной сети
- •5.5.4. Сравнительный анализ методик распределения расчетного перепада давления
- •5.6. Гидравлический расчёт кольцевых распределительных сетей Методика расчета кольцевых сетей
- •Методика гидравлической увязки кольцевой сети
- •5.7. Наружные газопроводы. Трубы и арматура
- •5.7.1. Пересечения газопроводов с различными препятствиями
- •5.9. Контрольная трубка с футляром:
- •5.7.2. Трубы и их соединения
- •5.7.3. Газовая арматура и оборудование
- •5.7.4. Приемка и ввод газопроводов в эксплуатацию
- •5.8. Внутренние устройства системы газораспределения
- •5.8.1. Устройство внутренних газопроводов
- •5.8.2..Бытовые газовые приборы
- •6. Хранилища природного газа и газозаправочные станции
- •6.1. Методы компенсации колебаний расхода газа
- •6.2. Газгольдеры
- •6.3. Аккумулирующая способность магистрального газопровода
- •6.4. Подземное хранение газа
- •6.4.1. Общие сведения по пхг
- •6.4.2. Общие требования
- •6.4.3. Организация эксплуатации
- •6.4.4. Техническое обслуживание и ремонт
- •Часть II. Сжиженный углеводородный газ (суг)
- •7. Общие сведения о сжиженных углеводородных газах
- •7.1. Компоненты суг
- •7.2. Маркировка и технические условия суг
- •7.3. Законы, константы и соотношения суг Законы идеального газа
- •Специфические особенности свойств сжиженных углеводородных газов (суг)
- •Отклонение реальных газов от идеального газа
- •8. Транспорт сжиженных углеводородных газов
- •8.1. Перевозка сжиженного газа автотранспортом
- •8.1.1. Перевозка сжиженных углеводородных газов в автоцистернах
- •8.2. Перевозка сжиженных газов по железным дорогам
- •8.2.1. Конструкция и техническая характеристика цистерн
- •8.2.2. Перевозка сжиженных газов по железным дорогам в крытых вагонах
- •Техническая характеристика цистерн, применяющихся за рубежом
- •8.3. Перевозка сжиженных углеводородных газов водным путем
- •8.3.1. Перевозка сжиженных углеводородных газов по морю
- •8.3.2. Перевозка сжиженных газов речным транспортом
- •8.4. Перевозка сжиженных углеводородных газов авиатранспортом
- •8.5. Транспортировка сжиженных углеводородных газов по трубопроводам
- •Контрольные вопросы:
- •9. Хранение сжиженных углеводородных газов
- •9.1. Способы хранения
- •9.1.1. Хранение при переменной температуре и высоком давлении
- •9.1.2. Хранение при постоянной температуре и низком давлении
- •9.2. Резервуары для хранения сжиженных углеводородных газов под давлением
- •9.2.1. Хранение сжиженных газов в стальных резервуарах под давлением
- •Допускаемый вакуум определяется из выражения
- •9.2.2. Подземные хранилища шахтного типа
- •9.2.3. Подземные хранилища в отложениях каменной соли
- •9.3. Эксплуатация подземных хранилищ в отложениях каменной соли
- •9.4. Низкотемпературное хранение сжиженных газов в наземных резервуарах
- •9.4.1. Конструкции низкотемпературных резервуаров
- •9.4.2. Низкотемпературное хранение сжиженных газов в подземных ледопородных резервуарах
- •9.5. Техническая и экономическая оценки существующих способов хранения сжиженных углеводородных газов
- •Контрольные вопросы:
- •10. Газонаполнительные станции сжиженных углеводородных газов
- •10.1. Назначение и размещение
- •10.2. Схемы и устройства гнс сжиженных газов
- •10.3. Типовые гнс сжиженных газов
- •10.4. Автоматизация и механизация процессов налива, слива и транспортировки баллонов
- •10.5. Характеристики насосов и компрессоров
- •10.6. Анализ методов перемещения сжиженных углеводородных газов
- •10.7. Использование сжиженных углеводородных газов в коммунально-бытовой газификации
- •10.7.1. Общие положения. Удельные расходы газа
- •10.7.2. Бытовые газобаллонные установки
- •Скобы …......……………………………………….. 2
- •Изоляция……………………………………...........8г
- •10.8. Заправка автомобилей сжиженными углеводородными газами
- •Контрольные вопросы:
- •11. Резервуарные и баллонные установки газоснабжения
- •11.1. Регазификация сжиженных углеводородных газов
- •11.1.1. Естественная регазификация
- •11.1.2. Искусственная регазификация
- •11.2. Резервуарные и баллонные установки с естественным и искусственным испарением [3, 10]
- •Список литературы
8.2. Перевозка сжиженных газов по железным дорогам
Для перевозки сжиженных нефтяных газов по сети железных дорог используются железнодорожные цистерны специальной конструкции.
Пропан перевозят в стальных цистернах вместимостью 51 или 54 м3 с полезной загрузкой 85%, что составляет соответственно 43 и 46 м3.
Кроме пропановых цистерн имеются бутановые с вместимостью резервуара 60 м3 при полезной загрузке 54 м3. [8]
8.2.1. Конструкция и техническая характеристика цистерн
Цистерна (рис. 8.7) представляет собой сварной цилиндрический резервуар со сферическими днищами 2, расположенный на четырехосной железнодорожной тележке 1. Крепление резервуара к раме осуществляется стяжными болтами 5 по типу 50-тонных бензиновых цистерн с применением двухосных тележек.
Резервуар снабжен люком диаметром 450 мм, на крышке которого расположена арматура. Люк вместе с арматурой закрывается предохранительным колпаком 3 диаметром 685 мм и высотой 340 мм. Для обслуживания арматуры вокруг колпака сделана площадка с поручнями 4 и стремянками 6 по обе стороны цистерны.
На крышке люка размещена сливо-наливная и предохранительная арматура, и арматура для контроля сливо-наливных операций. В центре крышки люка смонтирован пружинный предохранительный клапан 7 диаметром 32 мм (рис. 8.8), предназначенный для сброса паров сжиженного газа в атмосферу в случае, если в цистерне повысится давление больше допустимого (для пропана 20, для бутана 8 кгс/см2). Для отбора из цистерны или подачи в нее паров сжиженного газа служит угловой вентиль 6 диаметром 40 мм, соединенный через скоростной клапан с паровым пространством цистерны.
Термометр для замера температуры сжиженных газов помещается в кармане 5 (см. рис. 8.8), представляющем собой трубку длиною 2550 мм. Конец этой трубки, опущенный в цистерну, заварен, а верхний конец, ввинченный во фланец люка, открыт.
По обе стороны предохранительного клапана по продольной оси цистерны установлены два сливо-наливных вентиля 4 и 9 диаметром 40 мм, которые через скоростные клапаны 1 (рис. 8.9), автоматически прекращающие выход сжиженного газа в случае обрыва шланга, соединены с трубами, доходящими почти до дна цистерны.
Для контроля заполнения цистерны сжиженным газом служат вентили 2 и 3, заканчивающиеся внутри цистерны трубками на уровне максимального наполнения. При этом трубка вентиля 2, маховик которого окрашен в зеленый цвет, заканчивается на уровне максимально допустимого заполнения сосуда цистерны сжиженным газом, а трубка вентиля 3, маховик которого окрашен в красный цвет – на 50 мм выше. Вентиль 2 является вентилем-сигналом, а слой жидкости в 500 мм (находящийся между концами трубок вентилей 2 и 3) представляет собой допустимое контролируемое переполнение железнодорожной цистерны сжиженными газами.
Контроль за опорожнением цистерны осуществляется вентилем 10, трубка которого установлена на уровне нижней плоскости сливо-наливных трубок. При этом вентиль 1 предназначен для удаления столба жидкости из трубки вентиля 10 после его закрытия.
Вентиль 8 диаметром 12 мм служит для удаления из сосуда цистерны отстоявшейся воды и тяжелых неиспаряющихся остатков сжиженных газов. Конец трубки этого вентиля заканчивается на расстоянии 5 мм от низа цистерны.
Расчет сосуда цистерны на прочность ведется с учетом совместного действия нагрузок от упругости паров жидкости при температуре +55ºC, так как в летнее время температура транспортируемого сжиженного газа может быть значительно выше температуры окружающей среды, и давления жидкости в результате толчков цистерны и эффекта торможения. Упругость паров внутри цистерны определяется значением температуры жидкости. При температуре +55ºC упругость паров для пропана составляет 1,96, для н-бутана – 0,56 и для изобутана – 0,77 МПа.
Давления p1 и p2 (в кгс/см2), создаваемые в сосуде цистерны при толчке и торможении, определяются из соотношений:
p1 = ρжl10-4; (8.1)
,
(8.2)
где ρж – плотность жидкости, кг/м3; l – длина емкости, м; υ0 – скорость в момент начала торможения, м/с; t – время торможения, с; g – ускорение силы тяжести, м/с2.
Расчетное давление р для сосуда цистерны выбирается по большему значению из уравнений:
p = pп + p1; (8.3)
p = pп + p2. (8.4)
Далее расчет на прочность транспортных сосудов ничем не отличается от расчета стационарных сосудов.
В табл. 8.4 приведены технические характеристики действующих цистерн.
Таблица 8.4
Техническая характеристика специальных цистерн
для перевозки сжиженных нефтяных газов
Показатели |
Цистерны |
|||
пропановая |
бутановая |
|||
Емкость резервуара цистерны, м3 Полезная вместимость резервуара, м3 Допускаемое давление, МПа Диаметр емкости (внутренний), см Длина, см Масса тары, т Ширина вагоно-цистерны, см Давление гидравлического испытания, МПа Длина рамы цистерны, м Толщина стенки резервуара цистерны, мм Толщина стенки днища, мм Конструктивная скорость, км/ч |
54,0 46,0 2,0 260 1065 39,0 300 3,0 12,1 26 32 120 |
60,0 54,0 0,8 281 1065 35,6 300 1,2 12,1 16 24 120 |
За рубежом в настоящее время строятся и эксплуатируются железнодорожные цистерны безрамной конструкции с объемом котла более 100 м3 (табл. 8.5).