Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биологи окр.docx
Скачиваний:
0
Добавлен:
16.11.2019
Размер:
32.42 Кб
Скачать

1.Клетки эмбриональных (неспециализированных) тканей животных и растений в общем плане строения очень сходны. Именно это обстоятельство в свое время явилось причиной для появления и развития клеточной теории. Морфологические различия проявляются уже в дифференцированных клетках специализированных тканей растений и животных. Особенности строения растительной клетки, как и растения в целом, связаны с образом жизни и способом питания. Большинство растений ведет относительно неподвижный (прикрепленный) образ жизни. Специфика питания растений состоит в том, что вода и питательные вещества: органические и неорганические, находятся вокруг в рассеянном виде и растению приходится их поглощать путем диффузии. Кроме того, зеленые растения на свету осуществляют автотрофный способ питания. Строение клетки в самом общем виде известно вам еще из курса общей биологии и при подготовке к вступительным экзаменам вы достаточно хорошо штудировали эту тему. Эта тема в разных аспектах рассматривается и в соответствующих университетских курсах (например, зоология беспозвоночных, низшие растения). Кроме того, более детальное знакомство с клеткой на высоком уровне предстоит в курсе «цитология». Нам же важно акцентировать внимание на специфических особенностях строения растительной клетки, причем преимущественно клетки высшего растения.При самом поверхностном рассмотрении структуры типичной растительной клетки в ее составе обнаруживаются три основных компонента:

клеточная стенка,

вакуоль, занимающая в зрелых клетках центральное положение и заполняющая практически весь их объем и

протопласт, оттесняемый вакуолью к периферии в виде постенного слоя.

Размеры и форма растительных клеток варьируются в широком диапазоне. В типичном случае размеры клеток высшего растения колеблются в пределах 10 – 300 мкм. Правда, встречаются клетки – гиганты, например, клетки сочной мякоти плодов цитрусовых составляют в поперечнике несколько миллиметров или чрезвычайно длинные лубяные волокна у крапивы достигают 80 мм длины при микроскопической толщине.

2. Многие различия между вирусами животных и бактериофагами обусловлены тем, что организм животного-хозяина представляет собой сложный и интегрированный комплекс, состоящий из миллионов клеток, тогда как бактериальная клетка— это изолированная и независимая единица. Однако если исходить из центрального вопроса, интересующего вирусологов, а именно размножения вирусов, то индивидуальную клетку животного следует признать важным и независимым элементом, а поэтому, чтобы должным образом понять процессы, связанные с размножением или действием вирусов на клетки, необходимо прежде всего познакомиться со структурой и функцией этих клеток. Снаружи клетки животных ограничены цитоплазматической (или плазматической) мембраной; внутри нее находятся цитоплазма и ряд цитоплазматических органелл, из которых более всего выделяются митохондрии, рибосомы, аппарат Гольджи, эндоплазматическая сеть и лизосомы. В клетках высших организмов генетический аппарат сконцентрирован в ядре, также содержащем органеллы, называемые ядрышками.

3. Прокариотические клетки - это наиболее примитивные, очень просто устроенные, сохраняющие черты глубокой древности организмы. К прокариотическим (или доядерным) организмам относят бактерии и синезеленые водоросли (цианобактерии). На основании общности строения и резких отличий от других клеток их выделяют в самостоятельное царство дробянки. Рассмотрим строение прокариотической клетки на примере бактерий. Генетический аппарат представлен ДНК единственной кольцевой хромосомы, находится в цитоплазме и не отграничен от нее оболочкой. Такой аналог ядра называют нуклеоидом. ДНК не образует комплексов с белками и поэтому все гены, входящие в состав хромосомы, "работают", т.е. с них непрерывно считывается информация. Прокариотическая клетка окружена мембраной, отделяющей цитоплазму от клеточной стенки, образованной из сложного, высокополимерного вещества. В цитоплазме органелл мало, но присутствуют многочисленные мелкие рибосомы (бактериальные клетки содержат от 5000 до 50 000 рибосом).

4. Наряду к бактериальным полисахаридам принадлежит декстран, полимер глюкозы, связанной преимущественно в положении α(1→6), а в точках ветвления в положении α(1→3). В воде декстран образует вязкие слизи или гели, из которых путем введения поперечных связей получают гидрофильные сорбенты для разделения макромолекул методом молекулярно-ситовой хроматографии. Растворимый декстран находит применение в качестве заменителя плазмы при переливании крови, а также используется как пищевой продукт.

Полисахариды из водорослей (например, агарозы и каррагенаны) находят широкое применение как желирующие вещества. Агарозы более 100 лет используются в микробиологии как гелевая основа питательных сред (агар-агар). Крахмал, важнейший резервный полисахарид растений и компонент клеточных стенок, более подробно обсуждается в следующем разделе. Инулин, полимер фруктозы, используется как заменитель крахмала в питании диабетиков (см. с. 162). Кроме того, он служит контрольным веществом при определении почечного клиренса. Хитин, гомополимер из N-ацетилглюкозамина, связанного в положении β(1→4), — основной компонент наружного скелета насекомых и панцыря ракообразных. Кроме того, хитин входит в состав клеточных стенок мицелия грибов. Гликоген, важнейший резервный полисахарид животного мира, содержится в печени и мышцах.

5. Из альдопентоз наиболее известна D-рибоза как компонент РНК и коферментов нуклеотидной природы. В этих соединениях рибоза всегда присутствует в фуранозной форме. Подобно D-рибозе, D-ксилоза и L-арабиноза редко встречаются в свободной форме. Однако оба соединения в большом количестве входят в состав полисахаридов клеточных стенок растений. Среди альдогексоз наиболее известным соединением является D-глюкоза. Полимеры глюкозы, прежде всего целлюлоза и крахмал, составляют значительную часть общей биомассы, в свободном виде D-глюкоза присутствует во фруктовых соках (виноградный сахар), в плазме крови человека и животных (см. с. 162). D-Галактоза, составная часть молочного сахара (см. Б), является важнейшим компонентом пищевого рациона. Наряду с D-маннозой этот моносахарид входит в состав многих гликолипидов и гликопротеинов.

Фосфомоноэфир кетопентозы, D-рибулозы , является промежуточным продуктом гексозомонофосфатного шунта и в фотосинтезе. Наиболее важной кетoгeксозой (2) считается D-фруктоза. В свободной форме она содержится во фруктовых соках (фруктовый сахар) и в меде. В связанной форме фруктоза присутствует в сахарозе и и в растительных полисахаридах (например, в инулине). В дезоксиальдозах (3) одна из ОН-групп заменена на Η-атом. На схеме наряду с 2-дезокси-D-рибозой, являющейся составной частью ДНК, приведена L-фукоза, не содержащая ОН-группы при С-6 .Ацетилированные аминосахара N-ацетил-D-глюкозамин и N-ацетил-D-галактозамин, входят в состав гликопротеинов. Сахароспирты, сорбит и маннит, не принимают заметного участия в метаболизме здоровых животных.

6. В мальтозе, образующейся при расщеплении крахмала под действием амилаз солода , аномерная ОН-группа одной молекулы глюкозы связана α-гликозидной связью с С-4 второй молекулы глюкозы. Лактоза является важнейшим углеводным компонентом молока млекопитающих. В коровьем молоке содержится до 4,5% лактозы, в женском молоке — до 7,5%. В молекуле лактозы аномерная ОН-группа остатка галактозы связана β-гликозидной связью с С-4 остатка глюкозы. Поэтому молекула лактозы вытянута и оба пиранозных цикла лежат примерно в одной плоскости. В растениях сахароза служит растворимым резервным сахаридом, а также той транспортной формой, которая легко переносится по растению. Человека сахароза привлекает своим сладким вкусом. Источником сахарозы служат растения с высоким содержанием сахарозы, такие, как сахарная свекла и сахарный тростник.

7. Интерфаза (от лат. inter — между и фаза), интеркинез, стадия жизненного цикла клетки между двумя последовательными митотическими делениям.

Жиры — природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. В живых организмах выполняют структурную, энергетическую и др. функции.

Гетеротро́фы -организмы, которые не способны синтезировать органические вещества из неорганических путём фотосинтеза или хемосинтеза.

Биополиме́ры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин.

Дисахариды— органические соединения, одна из основных групп углеводов; являются частным случаем олигосахаридов.

Гистоло́гия— раздел биологии, изучающий строение тканей живых организмов. Обычно это делается рассечением тканей на тонкие слои и с помощью микротома. В отличие от анатомии, гистология изучает строение организма на тканевом уровне.

Диплоидный набор хромосом ( двойной набор хромосом, зиготический набор хромосом, полный набор хромосом, соматический набор хромосом) — совокупность хромосом, присущая соматическим клеткам, в которой все характерные для данного биологического вида хромосомы представлены попарно; у человека Д. н. х. содержит 44 аутосомы и 2 половые хромосомы.

Мейоз— деление ядра эукариотической клетки с уменьшением числа хромосом в два раза.

Глико́лиз— ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ.

Кроссинго́вер— процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза.

Гомологичные хромосомы -содержат одинаковый набор генов, сходны по морфологическим признакам, конъюгируют в профазе мейоза.

Эукарио́ты — домен (надцарство) живых организмов, клетки которых содержат ядра.

Автотро́фы— организмы, синтезирующие органические соединения из неорганических.

Трансляцией - осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК).

Первичная структура белка - это последовательность ковалентно связанных пептидными связями аминокислот, составляющих белок.

Прокариоты— одноклеточные живые организмы, не обладающие (в отличие от эукариот) оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий).

Белки́ — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот.

Фотосинтез— процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий).

Кле́тка — элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию.

Цитоло́гия— раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.

Мито́з — непрямое деление клетки, наиболее распространенный способ репродукции эукариотических клеток.

Гидрофильные вещества- твердые вещества, обладающие свойством смачиваться водой. Не смачиваются маслянистыми жидкостями.

Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток.

3 Пункт

,1. Профаза 1 мейоза (профаза первого деления) состоит из ряда стадий:

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей. Раннюю лептотену, когда нити хромосом видны еще очень плохо, называют пролептотена.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это хромосомы, сходные между собой в морфологическом и генетическом отношении. У нормальных диплоидных организмов гомологичные хромосомы – парные: одну хромосому из пары диплоидный организм получает от матери, а другую – от отца. При конъюгации образуются биваленты. Каждый бивалент – это относительно устойчивый комплекс из одной пары гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Один синаптонемальный комплекс может связывать только две хроматиды в одной точке. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК (образуется особая пахитенная ДНК). Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Отдельные биваленты располагаются на периферии ядра.

2,Сравнение Днк и рнк

признаки

днк

рнк

Местонахождение в клетке

Ядро, митохондрии, хлоропласты

Ядро, рибосомы, цитоплазмы, митохондрии, хролопласты

Местонахождение в ядре

Хромосомы

Ядрышко

Строение макромолекулы

Двойной неразветвленный линейный полимер, свернутый правозакрученной спиралью

Одинарная полинуклеотидная цепочка

Мономеры

Дезоксирибонуклеотиды

Рибонуклеотиды

Состав нуклеотид а

Азонистое основание (пуриновое-аденин, гуанин, пиримидиновое – тимин, цитозин); дезоксирибоза (углевод); остаток фосфорнойкислоты

Азонистое основание (пуриновое-аденин, гуанин, пиримидиновое-урацил, цитозин);рибоза (углевод); остаток фосфорнойкислоты

Типы нуклеидов

Адениловый (А), гуаниловый(Г), тимидиловый (Т), цитидиловый (Ц)

Адениловый (А), гуаниловый (Г), уридиловый (Т),цитидиловый (Ц)

Свойства

Способная к самоудвоению по принципу комплементарности А=Т, Т=А, Г=Ц, Ц=Г Стабильна.

Не способна к самоудвоению. Лабильна.

Функции

Химическая основа хромосомного генетического материала (гена); синтез ДНК, синтез РНК, информация о структуре белков.

Информационная (иРНК) – передает код наследственной информации о первичной структуре белковой молекулы, рибосомальная (рРНК) – входит в состав рибосом; транспортная (тРНК) – переносит аминокислоты к рибосомам; митохондриальная и платидная РНК – входят в состав рибосом этих органелл