Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СОПРОМАТ лекции 07.10.doc
Скачиваний:
8
Добавлен:
15.11.2019
Размер:
17.05 Mб
Скачать
  1. Гипотеза пластичности Треска—Сен—Венана

Согласно ей переход из упругого состояния в пластическое наступает тогда, когда максимальное касательное напряжение достигает некоторого постоянного значения (Рис. 10.4).

Рис. 10.4

Приравнивая , получим

Это и есть то расчетное напряжение, которое по критерию максимальных касательных напряжений должно быть сопоставлено с пределом текучести при растяжении.

  1. Гипотеза пластичности Хубера—Мизеса

Согласно этой гипотезе переход тела из упругого состояния в пластическое происходит, когда достигнет некоторого постоянного значения.

Рис.10.5

Откуда

В настоящее время эти две гипотезы часто применяются при расчетах на прочность деталей из пластичных материалов. Возникает вопрос: почему гипотеза Мизеса, приводящая к более сложному выражению для , принимается наряду с гипотезой Сен—Венана. По мнению многих авторов, она более точно отражает условие перехода в пластическое состояние. Но дело не только в этом, т.к. в процентном отношении разница не столь уже и велика. Она достигает максимума при чистом сдвиге, когда , и составляет примерно 13%. Более важным является другое обстоятельство, когда рассчитывается на прочность конструкция, то часто трудно определить, какому напряжению присвоить индекс один, два, три, т.к. нагрузки меняются по различным законам в зависимости от условий работы. В этом случае гипотеза Мизеса не обнаруживает разности в подсчете при перестановке местами индексов 1, 2, 3, что освобождает нас от необходимости определять, какое из напряжений является наибольшим, а какое — наименьшим.

Итак, мы рассмотрели два критерия пластичности, базирующихся на правдоподобных гипотезах и согласующихся с экспериментом.

Но к данному вопросу можно подойти и с иных позиций — с позиций упрощенной систематизации экспериментальных данных. Этот метод был впервые сформулирован Мором и носит его имя.

10.3. Теория пластичности и разрушения Мора

Допустим, что мы можем провести опыт при любом напряженном состоянии с пропорциональным изменением всех компонентов тензора напряжений. Выберем некоторое напряженное состояние, и будем пропорционально увеличивать все компоненты, пока напряженное состояние не станет предельным. В образце либо появятся пластические деформации, либо он разрушится. Вычертим на плоскости наибольший из кругов Мора. Будем считать, что предельное состояние не зависит от . Взяв, далее, новые напряженные состояния построим круги 2, 3, 4 ……… Вычертим общую огибающую (рис. 10.6).

Рис. 10.6

Примем, что эта огибающая является единственной для данного материала. Если огибающая задана, то можно при любом напряженном состоянии установить коэффициент запаса. В этом подходе, не было принято ни каких гипотез и теория Мора основана по логической систематизации результатов опытов.

Теперь построим огибающую по минимальному числу опытов. Наиболее простыми являются испытания на растяжение и сжатие. Два предельных круга построены на рис. 10.7.

Рис. 10.7

Для определения огибающей важно найти т. , соответствующую трехосному равномерному растяжению. До сих пор нет метода, по определению этой точки экспериментальным путем. Вообще не удается провести опыты, когда все три главных напряжения являются растягивающими. Поэтому пока не удается построить для материала предельный круг, расположенный правее предельного круга растяжения. Сейчас огибающую аппроксимируют касательной к двум предельным кругам растяжения и сжатия. Когда будет возможность осуществлять всестороннее растяжение форму можно уточнить (рис. 10.8).

Рис. 10.8

Связь между напряжениями и для огибающей прямой можно представить в виде

(10.1)

Найдем коэффициент и воспользовавшись предельными кругами растяжения и сжатия.

При растяжении подставляя в 10.1 найдем

, .

При сжатии

.

Таким образом:

Или окончательно получим