
- •Глава 1. Числовые ряды
- •§1. Основные понятия
- •§2. Геометрический ряд
- •§3. Простейшие свойства сходящихся рядов
- •§4. Необходимый признак сходимости ряда
- •§5. Достаточные признаки сходимости знакоположительных рядов
- •5.1. Признаки сравнения рядов
- •1) Если ряд (2) сходится, то ряд (1) также сходится,
- •5.2. Признак Даламбера
- •5.3. Радикальный признак Коши
- •5.4. Интегральный признак Коши
- •1) Ряд (1) сходится, если интеграл сходится;
- •2) Ряд (1) расходится, если интеграл расходится.
- •§6. Знакочередующиеся ряды
- •§7. Достаточный признак сходимости знакопеременного ряда
- •§8. Остаток ряда и его оценка
- •Глава 2. Функциональные ряды
- •§1. Основные понятия
- •§2. Равномерная сходимость
- •§3. Степенные ряды
- •§4. Свойства степенных рядов
- •Глава 3. Ряды фурье
- •§1. Ряды и коэффициенты Фурье
- •§2. Ряды Фурье для четных и нечетных функций
- •§3. Разложение в ряд Фурье периодических функций
РЯДЫ
Глава 1. Числовые ряды
§1. Основные понятия
Пусть дана бесконечная числовая последовательность: и1, и2, и3,…, иn,…
Определение. Выражение
и1 + и2 + и3 + … + иn + … (1)
называется числовым рядом, а элементы последовательности и1, и2, и3,…, иn,… – членами ряда.
Иногда для
обозначения ряда (1) применяют запись
:
=
и1
+ и2
+ и3
+ … + иn
+ …
иn называют общим членом ряда (при произвольном n).
Определение. Сумма n первых членов ряда (1)
(2)
называется n-ой частичной суммой этого ряда.
Очевидно, первая, вторая, третья и т.д. частичные суммы ряда
…
составляют бесконечную последовательность.
Определение. Ряд (1) называется сходящимся, если последовательность частичных сумм S1, S2, …, Sn имеет конечный предел
.
Значение этого предела называется суммой ряда.
При этом пишут:
или
.
Определение. Ряд (1) называется расходящимся, если последовательность его частичных сумм предела не имеет.
§2. Геометрический ряд
Рассмотрим ряд
, (3)
составленный из членов геометрической прогрессии. Часто данный ряд называют геометрическим рядом.
Составим частичную
сумму Sn
ряда:
.
По формуле для суммы n первых членов геометрической прогрессии:
.
Очевидно, что при n изменяется только второе слагаемое последней формулы:
,
причем характер его изменения зависит от того, каково число q.
Геометрический
ряд сходится
при
1
и расходится
при
1
(a0),
причем при
1
имеем
.
§3. Простейшие свойства сходящихся рядов
Теорема
1. Если
ряд
сходится и имеет сумму S,
то ряд
(где с
– некоторая
постоянная) также сходится и имеет сумму
cS.
Итак, если все члены данного сходящегося ряда умножить на одно и тоже число с, то сходимость этого ряда не нарушится, а сумма его умножится на то же число.
Таким образом, сходящиеся ряды подчиняются, подобно конечным суммам, дистрибутивному закону умножения – в сходящемся ряде можно выносить за скобки общий множитель всех членов ряда.
Теорема
2. Если
ряды
(1)
и
(2)
сходятся и имеют соответственно суммы
S
и ,
то ряды
(3)
и
(4)
также сходятся и их суммы соотвественно
равны S
+
и S
– .
Пример.
Найдем сумму ряда
.
Решение. По теореме 2:
.●
Таким образом: 1) сходящиеся ряды можно почленно складывать и вычитать так же, как и конечные суммы; 2) можно умножать члены сходящегося ряда на одно и тоже постоянное число, в результате получаются также сходящиеся ряды.
Замечание 1. Если ряды (1) и (2) оба расходятся, то о рядах (3) и (4) в общем случае ничего сказать нельзя. Они могут оказаться как сходящимися, так и расходящимися.
Рассмотрим два ряда
(5)
и
(6)
Теорема 3. Если сходится данный ряд (5), то сходится и ряд (6),полученный из ряда (5) отбрасыванием конечного числа k его первых членов. Обратно, если сходится ряд (6), то сходится и данный ряд (5).
Теорему 3 можно сформулировать следующим образом:.
На сходимость ряда не влияет отбрасывание любого конечного числа его первых членов.
Поэтому для установления сходимости ряда не обязательно учитывать все его члены. достаточно ограничиться членами, «начиная с некоторого места» или «начиная с некоторого номера п».