
- •Природоохранные технологии на тэс
- •Содержание
- •Предисловие
- •Введение
- •1.Современные технологические способы подавления оксидов азота
- •1.1. Этапы развития котельной техники России
- •1.2. Двухступенчатое сжигание.
- •Отрицательные последствия применения двухступенчатого сжигания
- •Опыт компании «Mitsui Babcock» по усовершенствованию двухступенчатого сжигания
- •1.3. Внедрение метода трехступенчатого сжигания на угольных электростанциях в России и снг
- •1.4. Усовершенствование метода трехступенчатого сжигания
- •1.5. Концентрическое сжигание
- •1.6.Подача воды или пара в зону горения.
- •Практическая реализация снижения nOx за счет впрыска пара
- •1.7. Опыт мэи по подавлению оксидов азота впрыском воды в зону горения
- •1.8. Рециркуляция дымовых газов
- •2. Сжигание топлив в кипящем слое
- •2.1. Сжигание твердых топлив в топках котлов, с классическим кипящим слоем
- •2.2. Топки с циркулирующим кипящим слоем
- •2.2.1. Отечественные котлы с циркулирующим кипящим слоем
- •2.2.2. Котлы с циркулирующим кипящим слоем под давлением
- •2.2.3.Зарубежные котлы с кипящим слоем (промышленный опыт)
- •Котлы с кипящим слоем, эксплуатируемые в сша
- •Применение котлов с цкс для сжигания сланцев
- •1.3.Сжигание твердых топлив с использованием аэрофонтанных предтопков
- •3. Плазменная технология
- •4. Разработка новых конструкций топочных камер для сжигания углей
- •4.1. Вихревые топки с жидким шлакоудалением
- •4.2.Принцип технологии вихревого низкотемпературного сжигания
- •4.2.1. Экономичность вир технологии
- •4.2.2. Экологические показатели
- •4.2.3.Надежность и маневренность
- •4.2.4. Результаты испытаний модернизированного котла пк-38 (ст. № 3а) Назаровской грэс
- •4.3.Пылеугольный котел с кольцевой топкой для крупных энергоблоков
- •5.Низкоэмиссионные горелочные устройства
- •5.1. Газомазутные малотоксичные горелки Классификация малотоксичных горелок
- •5.2. Зарубежные разработки малотоксичных горелок
- •5.2.1.Опыт внедрения малотоксичных горелок фирмой «Бабкок-Вилькокс»
- •5.2.2. Опыт внедрения малотоксичных вихревых горелок в Великобритании
- •5.2.3.Малотоксичные горелки, разработанные в Японии
- •5.3.Опыт внедрения малотоксичных зарубежных горелок в России
- •5.4. Работы вти по созданию малотоксичных горелок
- •5.4.1.Вихревые горелки вти
- •5.4.2. Работы вти по применению предварительной термоподготовки угольной пыли для создания горелочных устройств /6–9./
- •5.5. Разработки Томь-Усинской грэс и кгту по созданию горелочного устройства для снижения оксидов азота при сжигании газовых и длиннопламенных каменных углей в топках с жидким шлакоудалением
- •6.Термическая подготовка углей перед сжиганием в условиях тэс
- •6.1.Термическая подготовка углей в термоциклонных предтопках
- •6.2. Разработки эниНа
- •6.3. Разработки СибВти
- •6.4.Термическая подготовка углей с помощью плазменного газификатора
- •6.5. Работы Политехнического института сфу по применению предварительной термической подготовки углей в условиях тепловой электростанции для снижения оксидов азота.
- •7. Сжигание водотопливных суспензий
- •7.1. Современное состояние технологии сжигания водотопливных суспензий
- •7.2.Основные технологические характеристики водотопливных суспензий /5/.
- •7.3. Опыт применения водоугольных суспензий
- •7.3. Суспензионное топливо для мазутных тэс и котельных /5/.
- •7.4. Опыт применения водомазутных эмульсий на энергетических котлах тгмп - 314 и тгм - 96 тэц - 23 оао « Мосэнерго» /7/.
- •7.5.Разработки института «Новосибирсктеплоэлектропроект».
- •7.6. Исследования мэи (Технический университет) по применению водомазутных эмультсий для улучшения технико-экономических и экологических характеристик котельных агрегатов
- •7.7. Технико-экономическая перспективаиспользования суспензионного угольного топлива /5/.
- •8. Пассивные методы снижения токсичности дымовых газов при сжигании топлив
- •8.1. Химические методы очистки дымовых газов от оксидов серы
- •Мокросухой способ
- •Мокрый известняковый способ.
- •Озоновый способ
- •8.2.Химические методы очистки дымовых газов от оксидов азота
- •Технология сша
- •9. Золоулавливание на тэс
- •10. Мероприятия по снижению шума от оборудования тэс
- •11. Дымовые трубы тэс
- •Высота трубы, м 120 150 180 240 330
- •12. Защита водоемов от загрязнения сточными водами
- •12.1.Храктеристика сточных вод
- •12.2. Наиболее прогрессивные технические решения при эксплуатации электростанций «Мосэнерго» за счет внедрения кавитационных технологий.
- •Заключение
- •Список использованных источников Предисловие
- •К разделу № 1
- •К разделу № 2
- •К разделу № 3
- •К разделу № 4
- •К разделу №5
- •К разделу № 6
- •К разделу № 7
- •К разделу № 8
8. Пассивные методы снижения токсичности дымовых газов при сжигании топлив
Подготовка России к вступлению во Всемирную торговую организацию (ВТО) обязывает отечественную энергетику производить экологически чистую электроэнергию. В это понятие вкладывается, в первую очередь, необходимость глубокой очистки продуктов сгорания от летучей золы, оксидов азота, диоксида серы (SO2), загрязняющих окружающую природную среду.
Нормативы второго протокола к Международной конвенции о трансграничном переносе диоксида серы ограничили выбросы SO2 одновременно как концентрацией (минимальная 400 мг/м3), так и степенью сероочистки (максимальная 90%). Сейчас Европейским союзом для новых и действующих ТЭС приняты новые нормативы удельных выбросов диоксида серы, приведенные в табл. 8.1.
В Российской Федерации на долю угольных тепловых электростанций в 2005 г. приходилось 27,7 % сожженного условного топлива. С намеченным изменением топливного баланса в энергетике согласно Стратегии развития до 2020 года относительная доля угля к 2015 г. должна увеличиться до 34,9 % при одновременном количественном росте потребления этого топлива с 68,44 млн. т условного топлива в 2001 г. до 122,30 млн. т условного топлива в 2015 г. Это, естественно, приведет к росту выбросов диоксида серы до 2,4 млн. т, т.е. почти вдвое.
Поэтому проблема снижения выбросов диоксида серы с дымовыми газами угольных ТЭС является для отечественной энергетики весьма актуальной.
Основным твердым топливом в России являются энергетические угли Кузнецкого, Канско-Ачинского, Экибастузского, Интинского (Воркутинского) и Донецкого бассейнов, Азейского, Мугунского, Головинского, Артемовского, Партизанского и других месторождений, а также ряд местных углей.
Приведение отечественных нормативов в соответствие с европейскими будет сопровождаться введением для действующих ТЭС технических нормативов на выбросы загрязняющих веществ, в том числе диоксида серы. Технологии сероочистки для отечественных тепловых электростанций, обеспечивающие регламентированные концентрации SO2 в очищенных газах, в зависимости от мощности котельных агрегатов и сернистости сжигаемого топлива, можно разделить на три категории:
– для котлов малой и средней мощности, сжигающих мало и среднесернистое топливо, со степенью сероочистки 30–35 %;
– для котлов малой и средней мощности, сжигающих среднесернистое топливо, со степенью сероочистки 50–60%;
Таблица 8.1.
Нормативы удельных выбросов в атмосферу оксидов серы котельными установками для твердых и жидких топлив (ГОСТ Р 50831-95)
Тепловая мощность котла Q,МВт (паропроизподи-тельность котла D, т/ч) |
Приведенное содержание серы, Srпр,• кг/МДж |
Ввод котельных установок на ТЭС до 31 декабря 2000 г. |
Ввод котельных установок на ТЭС с 1 января 2001 г. |
||||
|
|
Массовый выброс SOx на единицу тепловой энергии, г/МДж |
Массовый выброс SOx,кг/т у.т. |
Массовая* концентрация SOx в дымовых газах при α = 1,4, мг/м3 |
Массовый выброс SOx на единицу тепловой энергии, г/МДж |
Массовый выброс SOxкг/т у.т. |
Массовая* концентрация SOxв ымовых газах при α = 1,4, мг/м3 |
До 199 (до 320) |
0,045и менее |
0,875 |
25,7 |
2000 |
0,5 |
14,7 |
1200 |
Более 0,045 |
1,500 |
44,0 |
3400 |
0,6 |
17,6 |
1400 |
|
200—249 (320—400) |
0,045 и менее |
0,875 |
25,7 |
2000 |
0,4 |
11,7 |
950 |
Более 0,045 |
1,500 |
44,0 |
3400 |
0,45 |
13,1 |
1050 |
|
250—299 (400—420) |
0,045 и менее |
0,875 |
25,7 |
2000 |
0,3 |
8,8 |
700 |
Более 0,045 |
1,500 |
44,0 |
3400 |
0,3 |
8,8 |
700 |
|
300 и более (420 и более) |
0,045 и менее |
0,875 |
25,7 |
2000 |
0,3 |
8,8 |
700 |
Более 0,045 |
1,300 |
38,0 |
3000 |
0,3 |
8,8 |
700 |
* При нормальных условиях (температура 0 °С, давление 101,3 кПа), рассчитанная на сухие газы.
Следует отметить, что независимо от тепловой мощности энергоустановки выбросы SO2 на установках, работающих на природном газе составляют 35 мг/м3, на сжиженном – 5 мг/м3.
Одной из проблем защиты воздушного бассейна является снижение выброса диоксида серы, ежегодное поступление которого в атмосферу при сжигании органических топлив исчисляется миллионами тонн.
Метод очистки дымовых газов от SO2 следует разделить на химические (пассивные) и технологические (активные).
Химические методы очистки могут быть подразделены на циклические (замкнутые), в которых адсорбент (поглощающее твердое или жидкое вещество) регулируется и поглощается в цикл, а улавливаемый диоксид серы используется, и нециклические (разомкнутые), где регенерация адсорбента и других веществ не производится.
Кроме того, методы сероочистки подразделяются на сухие и мокрые.
Следует учитывать также, что циклические способы очистки значительно дороже по эксплуатационным расходам нециклических вариантов.
Следует отметить, что в литературе практически отсутствует данные по выбросам оксидов серы в развивающихся странах Азии, Латинской Америки, Африки. В целом, экологическая политика в этих регионах находится на низком уровне: в большинстве этих стран до настоящего времени нет систем контроля вредных выбросов. Поэтому в ближайшем будущем здесь вряд ли можно ожидать заметных достижений по снижению эмиссии SO2.
В то же время все европейские страны и высокоразвитые государства (США, Канада, Япония) объединены в различные организационные структуры (например, OECD-организация экономического сотрудничества и развития), в которых они успешно решают технические и организационные проблемы, касающиеся технологии очистки дымовых газов, нормирования выбросов, контроля трансграничных переносов и др. Эти страны, координируя свою деятельность, участвуют в разработке программ, таких как, программа ООН по развитию окружающей среды (UNEP), Всемирная программа мониторинга окружающей среды (GEMS), Программа Всемирной Организации Здравоохранения (WHO) и т. д. В связи с этим в промышленно развитых странах контроль за загрязнением воздуха оксидами серы начал осуществляться еще в 60-х годах прошлого столетия. Первые принятые законы о чистом воздухе устанавливали предельно допустимые концентрации (ПДК) оксидов серы в атмосферы и обязали электрокомпании контролировать содержание серы в топливе и оснащать ТЭС высокими трубами для рассеивания дымовых газов в верхних слоях атмосферы.
Позже возник интерес к проблеме выбросов SO2, переносимых в атмосфере на большие расстояния от источников загрязнения. Предметом особых забот стали «кислотные дожди», и внимание специалистов и общественности переключилось с проблемы воздействия местных выбросов на проблему трансграничного переноса SО2 и воздействия на экосистемы. Первым международным соглашением по сокращению выбросов диоксида серы была Конвекция о трансграничном загрязнении воздуха на большие расстояния, подписанная в 1979 г. и вступившая в силу в 1983 г. В 1985 г. 21 страна-участница конвекции подписала протокол об ограничении выбросов серы или их трансграничных потоков, образовав так называемый «30%-ный клуб». Протокол вступил в силу в 1987 г.
Осуществление подобных международных соглашений потребовало введения соответствующих положений в национальное законодательство. К настоящему времени многие государства ввели законодательное регулирование выбросов оксидов серы, разработав нормативы на степень улавливания SО2 из дымовых газов и нормы предельно допустимых выбросов оксидов серы на единицу объема уходящих газов, единицу установленной мощности или выработанной энергии. В некоторых случаях подобные меры контроля дополняются нормативами на использование топлива и на качество последнего. Так, для сжигания угля в паровых котлах любой мощности в Дании введен норматив на содержание серы в топливе 1,2 %, а в Германии и Италии даже 1 %. Иногда механизмы контроля выбросов включают требования по применению технологических методов сокращения эмиссии SО2. В США, например, это требование, сформулировано как обязательное использование наилучшей из доступных и экономически приемлемой технологии для минимизации выбросов оксидов серы.