Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций по ГНГ.doc
Скачиваний:
46
Добавлен:
13.11.2019
Размер:
1.35 Mб
Скачать

Глава 3. Горные породы как вместилища нефти и газа

Земная кора сложена горными породами - естественными минеральными агрегатами определенного состава и структуры. В соответствии с происхождением различают три генетических класса: осадочные, магматические (изверженные) и метаморфические.

В настоящее время открыто около 50 тыс. месторождений нефти и газа и из них только около 0,1% месторождений приурочено к метаморфическим и изверженным породам, другими словами, можно говорить о генетической приуроченности месторождений нефти и газа к осадочным породам.

Существует большой спектр осадочных горных пород, состав и структура которых зависят в самом общем виде от природно-климатических условий осадконакопления, особенностей геологического развития той или иной территории.

Осадочные породы формируются из следующих основных компонентов:

- продуктов механического разрушения горных пород различного генезиса (обломочная часть);

  • продуктов химических реакций, происходящих, главным образом, в водной среде (хемогенная часть);

  • остатков животных и растительных остатков (биогенная часть);

- продуктов вулканической деятельности (вулканогенная часть). Осадочные породы в подавляющем своем большинстве состоят из

нескольких компонентов. Так, практически все осадочные породы содержат то или иное количество органического вещества (биогенная часть).

В силу гетерогенности компонентов, слагающих осадочные породы, последние представляют собой дисперсные среды, которые характеризуются свойствами - пористостью и проницаемостью.

3.1. Пористость горных пород

Пористость горной породы - свойство породы, заключающееся в наличии в породе пустот разного генезиса (пор, каверн, трещин). Это свойство наиболее характерно для осадочных пород.

Суммарный объем пустот в породе (пор, каверн, трещин) называют общей (абсолютной) или теоретической пористостью. Величина объема пустот, выраженная в процентах по отношению ко всему объему породы, называется коэффициентом пористости:

Кп= SMп/ v,

где Кп - коэффициент пористости, Sмп- суммарный объем всех пустот в породе, v - объем породы.

Величина объема пор зависит от взаимного расположения обломочных зерен и характера их укладки (рис. 1, 2, 3). Наименее плотная укладка равновеликих зерен шарообразной формы характеризуется коэффициентом 47,6%.

Рис. 1. Наиболее плотное расположение зерен. Теоретический объем пор 25,8%.

Рис. 2. Среднее по плотности расположение зерен. Теоретический объем пор 36,7%.

Рис 3. Наименее плотное расположение зерен. Теоретический объем пор 47,6%.

По своему генезису поры и другие пустоты в породе могут быть подразделены на первичные и вторичные. Первичными называются пустоты существующие в породе с момента формирования осадка. Вторичными называются пустоты, которые возникли в уже сформировавшихся породах. Особенно велика доля вторичных пустот в карбонатных породах.

В породах присутствуют как сообщающиеся между собой пустоты, так и изолированные. Объем пустот, сообщающихся между собой, называют открытой пористостью. Открытая пористость меньше абсолютной пористости на объем изолированных пор. В самом общем виде разница между этими величинами возрастает по мере увеличения степени постседиментационной преобразованности пород.

Однако, не по всем сообщающимся пустотам может происходить фильтрация флюидов. Это свойство породы определяется эффективной пористостью. Эффективная пористость - это объем пустот в породе по которому происходит движение жидкости или газа. Коэффициент эффективной пористости не имеет достаточно точного количественного определения, так как выделить долю пустот, по которым происходит фильтрация, принципиально не возможно. Чаще под эффективной пористостью понимают разность между открытой пористостью и объемом пор, занятых остаточной водой (Кпэф = Кпо (1-К).На практике величина определяемого коэффициента эффективной пористости будет зависеть от способа ее определения, поверхностно-активных свойств на границе раздела фильтрующихся флюидов и т.д.

По морфологическим признакам выделяют межзерновую (гранулярную), каверновую и трещинную пористости. Морфология межзерновой пористости определяется пространственными соотношениями обломочных зерен новообразованных минералов в поровом пространстве и т.д. (рис. 4). Кавернам принято называть пустоты в горных породах размером более 1 мм. Наиболее широко каверны распространены в карбонатных породах, где они могут составлять существенную долю общей емкости. Трещинная пористость определяется густотой и раскрытостью трещин и, как правило, значительно меньше межзерновой пористости.

Размеры пор в горных породах, как правило, редко превышают 100 мкм.


Рнс. 4 Аутигенный кварц в поровом пространстве песчаника. Видны следы коррозии обломочных зерен (Кобяйская скв., нижняя юра, гл. 4130 м).

Пористость различных типов горных пород колеблется в очень широких пределах.

Для слабосцементированных песков открытая пористость чаще всего колеблется в пределах 20-40%, для песчаников - 5-30%, для известняков -1-15%, для доломитов - 3-20%.

В поровом пространстве горных пород всегда присутствует вода. Отношение объема открытых пор породы, занятое водой, к общему объему открытых пор (открытая пористость) называется водонасыщенностью или коэффициентом водонасышенности. Определенный объем поровой воды удерживается у стенок пор, каверн и трещин поверхностно-молекулярными и капиллярными силами и не участвует в процессе фильтрации. Эта вода называется остаточной. Количество остаточной воды в пустотном пространстве коллектора зависит от структурных и текстурных особенностей породы, минералогического состава породы и цемента, от физико-химических свойств самой воды. Остаточная водонасыщенность выражается в процентах или в долях единицы. В самом общем виде карбонатные породы-коллекторы при равных фильтрационно-емкостных свойствах всегда характеризуются меньшими количествами остаточной воды по сравнению с терригенными породами-коллекторами. В терригенных породах-коллекторах остаточная водонасыщенность при прочих равных условиях (минералогический состав обломочной части и цемента, количество и тип цемента) уменьшается с увеличением проницаемости.

Коэффициент остаточной водонасышенности (Ков) колеблется в очень широких пределах: от первых процентов до 70% и выше. В нефте-газонасыщенных коллекторах К0, чаще всего колеблется в пределах 15-30%. Значения коэффициента Ко, ниже 10% свидетельствует о гидрофобизации коллектора. В абсолютном большинстве своем осадочные породы изначально являются гидрофильными, т.е. вода избирательно лучше смачивает зерна (обломки, агрегаты), чем нефть. Другими словами, каждое зерно покрыто пленкой воды. В гидрофобных породах, напротив, нефть избирательно лучше смачивает твердую фазу коллектора, чем вода. В качестве примера гидрофобности твердой фазы коллектора можно привести ордовикские песчаники месторождения Оклахома-Сити (США), в которых остаточная водонасыщенность меньше одного процента. Свойствами гидрофобности обладают и некоторые прослои ботуобинского горизонта на Среднеботуобинском и Таас-Юряхском месторождениях в Якутии.

С коэффициентом остаточной водонасыщенности теснейшим образом связаны коэффициенты нефтенасыщенности и газонасыщенности - эти коэффициенты равны 100% - Ков% или 1 - Ко».

3.2. Проницаемость горных пород

Проницаемость - свойство горных пород, определяющее способность пропускать жидкости и газ. Абсолютно непроницаемых пород нет. Породы способны при обычно существующих в верхней части земной коры пропускать жидкости или газы называются проницаемыми. Проницаемость оценивается по формуле Дарси, согласно которой скорость фильтрации несжимаемой жидкости при ламинарном течении ее в пористой среде, пропорциональна градиенту давления и обратно пропорциональна динамической вязкости жидкости:

k = QmL/∆PF, где к - проницаемость, Q - объемный расход жидкости в единицу времени, m - вязкость жидкости, L - длина пористой среды, ∆Р - перепад давления, F - площадь поперечного сечения.

Коэффициент проницаемости измеряется в Дарси и имеет размерность площади (м2). За Дарси принимается такая проницаемость, при которой через породу с поперечным сечением 1 см2 и при перепаде давления в 1 атм на протяжении 1 см проходит 1 см3 жидкости вязкостью 1 сантипуаз. Из определения и физического смысла коэффициента проницаемости следует, что величина последнего не должна зависеть от флюида, который движется через пористую среду.

Однако, на практике обычно наблюдаются изменения коэффициента проницаемости для разных флюидов и во времени.

Причин, вызывающих, как правило, уменьшение коэффициента проницаемости во времени довольно много. Например, резко снижается проницаемость при фильтрации пресной воды через песчаник с глинистым цементом, представленным минералами, способными впитывать воду. Эти минералы (монтмориллонит, смешаннослойные и некоторые другие) впитывая воду увеличивают свой объем в поровом пространстве, что препятствует движению воды. При фильтрации жидкостей через рыхлый песчаник может происходить перемещение слабосцементированных мельчайших минеральных частичек в поровом пространстве и закупорка межпоровых каналов ("авгокольматация"). Снижение проницаемости может происходить в результате выпадения или адсорбции на поверхности зерен асфальтово-смолистых веществ при фильтрации нефти. Снижение проницаемости может происходить и под влиянием поверхностно-активных взаимодействий в случае многофазной (газ-жидкость, жидкость-жидкость) фильтрации.

В системе СИ проницаемость выражается в м2. Внесистемная единица проницаемости - дарси (Д). 1 Д = 1,027-10-12 м2= 1,02 мкм2. Величина проницаемости горных пород в абсолютном большинстве меньше одного дарси . Чаще всего проницаемость горных пород составляет десятые -тысячные доли 1 мкм2.

Проницаемость осадочных пород изменяется в очень широких пределах - от сотых долей 1мкм2 до нескольких мкм2. При проницаемости более 0,01 мкм2 породы относятся к хорошо проницаемым, при проницаемости [(10-0,01)7-10-3 мкм2] - к средненепроницаемым, при проницаемости менее 0,017-10-3 мкм2 - к слабопроницаемым.

Различают абсолютную, фазовую и относительную проницаемость. Абсолютная проницаемость характеризует физические свойства породы. Поэтому абсолютная проницаемость определяется по газу в предварительно проэкстрагированном и высушенном образце породы.

Фазовая проницаемость представляет собой проницаемость фильтруемой жидкости (газа) через пористую среду, насыщенную другой жидкостью. Значение фазовой проницаемости всегда меньше абсолютной проницаемости и зависит от насыщенности преобладающей фазой, величины смачивания и геометрии порового пространства.

Проницаемость относительная, величина определяемая как отношение фазовой проницаемости по данной жидкости к абсолютной проницаемости данной породы. Относительная проницаемость используется для характеристики фильтрационного сопротивления потоку данной жидкости в горной породе при наличии в её поровом пространстве других, не смешивающихся друг с другом жидкостей.

На рис. 5 показана зависимость эффективных проницаемостей от водонасыщенности порового пространстве породы. Из рис. 5 видно, что относительная проницаемость для керосина (К0к) быстро уменьшается при увеличении водонасыщенности породы. При величине водонасыщенности в 80% проницаемость по керосину равна нулю. Изменение относительной проницаемости для воды (Ко,) происходит в обратном направлении. При водонасыщенности менее 12% в породе движется только керосин,- а при водонасыщенности породы в 80% относительная проницаемость для воды увеличивается до 50% от абсолютной.

Рис. 5. Зависимость относительной фазовой проницаемости от насыщенности водой порового пространства.

3.3. Изменение пористости и проницаемости

Осадочная порода в процессе своей постседиментационной истории претерпевает значительные изменения в своей структуре и составе. Сформировавшийся осадок на стадии диагенеза превращается в породу. Основные процессы на этой стадии - окислительно-восстановительные реакции и физико-химические реакции выравнивания концентраций в поровых растворах. Окислительно-восстановительные реакции выражаются, главным образом, в окислении захороненного в осадке органического вещества, а реакции выравнивания концентраций в поровых водах приводят в образованию конкреций. Следующая стадия -катагенез - основная стадия преобразований осадочной породы. На этой стадии под действие возрастающих с глубиной залегания давлений и температур происходят в осадочной породе следующие изменения: уплотнение, растворение неустойчивых компонентов породы, минеральные новообразования и перекристаллизация. Следующей стадией преобразования осадочных пород может быть метагенез (в случае увеличения глубины залегания), в процессе которого порода начинает утрачивать свои седиментационные признаки и начинает превращаться в метаморфическую породу, или гипергенез (в случае поднятия породы в зону свободного водообмена), в процессе которого может произойти полная дезинтеграция и разрушение породы.

В осадочных породах изменения на стадии катагенеза величин коэффициентов пористости и проницаемости зависят от большого числа факторов. Универсальным является закономерное снижение пористости и проницаемости осадочных пород с глубиной. Однако, темпы снижения этих параметров у каждой литологической разности неодинаковы.

В отложениях, испытывающих стабильное погружение раньше всего (на меньших глубинах) уплотняются хемогенные породы, медленнее всего уплотняются глинистые и диатомовые или, другие типы осадков по интенсивности уплотнения занимают промежуточное положение.

В сформировавшемся осадке на стадии диагенеза все межзерновое пространство заполнено водой - в глинистых осадках (илах) вода в единице объема осадка занимает до 70-80%, другими словами пористость составляет 70-80%. По мере увеличения глубины залегания этого осадка под воздействием веса вышележащих осадков из ила выжимается вода -происходит сближение глинистых частиц и соответственно уменьшение объема заполненного водой, т.е. уменьшается пористость осадка. И на глубине в первые сотни метров пористость (водонасыщенность) уменьшается до 30%.

Дальнейшее погружение уже на стадии катагенеза приводит к уменьшению пористости до 10% и менее на глубинах около 3000 м.

В целом, процесс уплотнения глинистых пород довольно резко замедляется с глубиной и аппроксимируется криволинейной зависимостью, которая на определенной глубине принимает асимптотический характер (рис. 6).

Рис. 6. Графики зависимости плотности глин от глубины их погружения. Кривые: 1 - по В.Энгельгардту (1964); 2 - по Б.К.Балавадзе (1957); 3 - по Дж.Уиллеру (1961); 4 - по L.F.Athy (1930); 5 - по Н.Б.Вассоевичу (1955); 6 - по Е.И.Стетюхе и др. (1961).

Известно, что емкостные свойства песчаников во многом определяются их первичными седиментационными признаками (вещественный и гранулометрический состав обломочной части, степень его сортированности, и т. д.). Эти первичные признаки определяют пористость осадка, которая, , теоретически колеблется в весьма широком пределе. Вместе с тем, установлено, что процесс уплотнения терригенных пород и соответственно уменьшения коэффициента пористости имеет универсальный характер для всех типов терригенных пород. Уменьшение пористости песчаников с глубиной залегания оценивается через градиент снижения открытой пористости (Кп). Так, Б.КЛрошляковым (1974 г.) было показано, что Кп песчано-алевритовых пород мезозоя Северного Предкавказья до глубины 3300— 3500 м сокращается на 6-9% на 1000 м, на больших глубинах градиент снижения Кп составляет 3-5% на 1000 м. Аналогичные величины этого градиента установлены для многих других регионов мира (Северное море, Южный Мангышлак и др.). Такие же величины градиента установлены и для пермских и мезозойских песчаников Вилюйской синеклизы - в интервале глубин 1,5-3,5 км - 7-9%, на глубинах свыше 3,5 км -3-4% на 1000 м. Закономерное снижение уменьшения пористости песчаников также аппроксимируется криволинейной зависимостью, аналогичной кривой уплотнения глин; однако, эта кривая имеет более пологий характер на глубинах до 3-4 км (рис. 7).

• Рис 7. Графики зависимости открытой пористости песчаников от глубины их залегания.

1 - мезозойские и пермские отложения Вилюйской синеклизы; мезозойские отложения: 2 - Прикаспийской впадины, 3 - Восточного Предкавказья, 4 - Южного Мангышлака; 5 - кайнозойские отложения Апшеронского п-ва.

В карбонатных породах формирование первичного порового пространства происходит на стадиях седиментации и диагенеза (поры унаследованные от скелетов организмов, контракционные трещины и пространства в пелитоморфной (размеры частиц меньше 0,001-0,005 мм) породе, пустотные пространства между обломками и фрагментами органических остатков и обломками карбонатных пород.

При формировании пустотного пространства в карбонатных породах главную роль играет не фактор гравитационного уплотнения с глубиной, а неоднородность структуры порового пространства, заложенная еще на стадии седиментогенеза. В целом направленность изменения пористости и проницаемости карбонатных пород имеет более сложный характер, по сравнению с терригенными породами.

Для терригенных пород отмеченное изменение коллекторских свойств пород обусловлено влиянием двух основных факторов -механического и стадиального, находящихся в причинно-следственной связи. Такие факторы, как строение разреза, вещественный состав пород, температурный режим, химизм среды будут сказываться на темпе уплотнения.

Помимо механического уплотнения пород-коллекторов под действием геостатической нагрузки вышезалегающих отложений, уменьшение пористости и проницаемости с глубиной обусловлено:заполнением порового пространства, трещин и каверн аутигенными минералами (монтмориллонит, гидрослюда, каолинит, хлорит, лептохлорит, глауконит, кальцит и др.);регенерацией кварца, полевых шпатов и плагиоклазов (регенерация обрастание и разрастание обломочных зерен); растворением обломочных зерен на контакте друг с другом с возникновением структур растворения (конформных, инкорпорационных, микростиллолитовых).

Можно выделить две стадии уплотнения терригенных пород: стадия механического уплотнения и стадия растворения. На первой -преобладают процессы формирования более плотной упаковки за счет механического перемещения зерен, из взаимного приспособления, за счет механической деформации; для этой стадии характерны градиенты снижения К„ на 7-9% на 1000 м. На второй стадии доминируют процессы растворения зерен на контактах зерен, формирование мозаичных структур, микростиллолитовых швов; градиенты снижено Кп – 3-4% на 1000 м.

Динамика изменения коллекторских свойств карбонатных пород значительно сложнее. Изначально первичное поровое пространство в карбонатных биогенных породах представляет собой сложную систему, структура которой обусловлена морфологией и расположением рифостроящих (биогермостроящих) организмов (кораллы, строматопоры, мшанки, губки, сине—зеленые водоросли); более простую структуру порового пространства имеют карбонатные породы, сложенные обломками и фрагментами раковин и биогенных пород.

Вместе с тем, на фоне закономерного ухудшения фильтрационно-емкостных свойств пород с глубиной наблюдаются отклонения в сторону более высоких значений коэффициентов пористости и проницаемости, а также замедление темпов уплотнения пород.

Замедление темпов уплотнения пород обусловлено литологическими особенностями породы, химизмом флюидов, механическим влиянием флюидов.

Наиболее предрасположены к замедлению темпов снижения коллекторских свойств крупно- и среднезернистые песчаники с низким содержанием цемента. При погружении песчаников на большие глубины в результате возникновения структур растворения образуется жесткий каркас с определенными упругими свойствами, воспринимающий на себя большую часть геостатической нагрузки. Однородность размера зерен (хорошая отсортированность обломочного материала) обусловливает болыпую величину пористости, а в случае крупнозернистого песчаника и больший размер пор.

Наличие в известняках и доломитах изначально крупных межформенных и внутриформенных пор и каверн также способствует сохранению или замедленному снижению пористости и проницаемости.

По мнению некоторых исследователей замедлению темпов уплотнения песчаников способствует и большая толщина пласта. Для глинистых толщ это достаточно четко фиксируется по динамике процесса гидрослюдизации монтмориллонита (см. раздел 5.4).

Замедляют процесс снижения коллекторских свойств находящихся в поровом пространстве жидкие и газообразные УВ, которые препятствуют или подавляют процессы аутигенного минералообразования.

Механическое влияние флюидов на темпы снижения коллекторских свойств происходит в том случае, когда они находятся в поровом пространстве в условиях аномально высокого пластового давления (АВПД).

Вторичная пористость образуется в результате доломитизации известняков, выщелачивания отдельных минеральных компонентов породы, перекристаллизации обломочных и сформировавшихся ранее аутигенных минералов, трансформации слоистых силикатов.

Многие исследователи обратили внимание на то, что процессы формирования вторичной пористости приурочены к определенным глубинам залегания. Н.А.Минским (1975) в вертикальном разрезе кальцитсодержащих пород выделяется две основные зоны:

верхнюю А и нижнюю Б (рис. 8), граница между которыми проходит на глубине 1-1,5 км. Каждая зона подразделяется на несколько подзон.

В подзоне A1 кальций пород-коллекторов растворяется водами, насыщенными углекислым газом. Эта зона характеризуется увеличенными значениями пористости.

В подзоне А2 происходит уменьшение пористости, так как здесь происходит перекристаллизация кальцита.

Зона Б также подразделяется на ряд подзон: подзона Б21 характеризуется увеличением пористости и проницаемости, вызываемым растворением кальцита и трансформацией монтмориллонита в гидрослюду (в результате последнего процесса уменьшается объем занимаемый этим минералом). Подзона занимает интервал глубин 1-3,0 км.

В подзонах Б22 и Б23 происходит уменьшение пористости и проницаемости.

Подзона Б21 Н.А.Минским выделяется как зона оптимальных коллекторов (ОК).

Процессы формирования вторичной пористости активизируются в условиях трещинообразования. Образование трещин способствует интенсификации процессов массопереноса и массообмена.

Рис. 8. Схема изменения коллекторских свойств кальцитсодержащих пород с глубиной (по Н.А.Минскому, 1975).

а - пространство пор и трещин; 6 - кремнезем, силикаты; в - кальцит; г-максимальная пористость; д - максимальная проницаемость; Мпк - область наибольшего увеличения (аномалия) максимальных значений пористости с глубиной; г.у.к. - граница устойчивости кальцита; с. у. - ступенчатое уплотнение коллекторов; O.K. - область оптимальных свойств коллекторов.

По А.А. Ханину(1969) склонность осадочных пород к трещинообразованию уменьшается в ряду: доломитизированные известняки- чистые известняки-доломиты-аргиллиты-песчаники и алевролиты-ангидрито-доломитовые породы-ангидриты.

Как правило, зоны трещиноватости приурочены к плоскостям разрывных нарушений, которые окружены системой оперящих трещин. По этим трещинам циркулируют растворы, растворяющая способность которых по отношению к вмещающим породам определяется степенью их минерализации, составом и обогащенностью газовой фазой (С02, Н2 и др.).

Говоря о развитии вторичной пористости надо всегда иметь ввиду локальность распространения вторичных коллекторов в пространстве. Размеры зон вторичных коллекторов зависят от оптимального сочетания большого количества факторов (тектонический режим, литологический состав и строение разреза, примеров формирования вторичной пористости, в результате процессов упомянутых выше. Как правило, вторичные породы-коллекторы приурочены к породам залегающим (или залегавшим) на глубинах 3-3,5 км. Например, месторождение нефти и газа пермотриасовых отложений Мангышлака и плато Устюрт связаны с трещинными и порово-трещинными коллекторами. Залежи нефти в нефтекумской свите пермотриасового возраста на востоке Ставропольского края приурочены к зонам локального развития вторичных коллекторов. К сложным порово-кавернозно-трещинным породам-коллекторам приурочены залежи газа на Оградненском месторождении в Нюйско-Джербинской впадине, на Бысахтахском месторождении в Березовской впадине на юго-западе Якутии. На Бысахтахском месторождении одна залежь газа приурочена к обширной зоне дробления сливных кварцевых песчаников венда.

Существенное влияние на фильтрационно-емкостные свойства пород-коллекторов оказывает количество и минеральный состав цемента. Цемент осадочных пород - вещество, скрепляющее частицы осадочных пород (зерна, обломки пород, фрагменты скелетов организмов, оолиты и др.). В осадочных породах наиболее широко развиты глинистый и карбонатный цементы, реже сульфатный, цеолитовый, кремнистый, фосфатный и др. По объемному соотношению с цементируемым материалом выделяются следующие типы цемента: базальный, пойкилитовый, поровый, пленочный и контактовый. Первые три типа практически полностью заполняют поровое пространство.

Независимо от состава и типа цементации однозначно уменьшаются емкостно-фильтрационные свойства пород-коллекторов при увеличении содержания цемента. При прочих равных условиях (гранулометрический состав обломочной части, сортировка и др.) наиболее высокими коллекторскими свойствами обладают мономинеральные кварцевые песчаники с минимальным (до 3-5%) содержанием глинистого цемента. В качестве примера можно привести песчаники ботуобинского горизонта на юго-западе Якутии. При значениях содержания цемента более 15-20% наиболее резко снижает значения открытой пористости карбонатный цемент. В случае присутствия в породе глинистого цемента при прочих равных условиях открытая пористость выше в песчаниках с каолинитовым цементом и ниже в песчаниках с монтмориллонитовым и гидрослюдистым цементом. Это достаточно четко, например, прослеживается в песчаниках перми и нижнего триаса Вилюйской синеклизы.

3.4.Породы-коллекторы, породы-покрышки, природные резервуары

Породы обладающие, благодаря коллекторским свойствам (пористость, проницаемость), способностью аккумулировать и отдавать флюиды называются коллекторами.

По морфологии пустотного пространства выделяются поровые, кавернозные, трещинные и смешанные коллекторы.

Поровые (гранулярные) коллекторы характерны для терригенных и в меньшей степени для карбонатных пород. В поровых коллекторах размеры и форма пор определяется размерами обломочных зерен, степенью их окатанности, минеральным составом обломочных зерен, количеством и минеральным составом цемента. В карбонатных породах размеры и конфигурация пор определяется размером кристаллов кальцита и доломита, фрагментов раковин и скелетных остатков. Гранулярная пористость является сингенетичной, т. е. формируется одновременно с образованием осадка. Как было показано выше, в постседиментационной истории преобразования осадка происходит закономерное уменьшение величины гранулярной пористости, обусловленное влияние таких факторов, как давление, температура, вещественный состав породы и т. д.

Кавернозные коллекторы характерны для карбонатных пород. Кавернозная составляющая пустотного пространства породы всегда является вторичной, формирующейся за счет растворения (выщелачивания) и выноса минеральной массы, за счет метасоматического замещения кальцита доломитом. Каверны в отличие от пор распределяются в породе неравномерно.

Трещинные коллекторы образуются в плотных породах, практически лишенных гранулярной пористости. Это могут быть хемогенные породы с изначально отсутствующей гранулярной пористостью, а также породы лишившиеся гранулярной пористости в процессе постседиментационных преобразований.

Чисто кавернозные и чисто трещинные коллекторы распространены очень редко.

Наиболее распространены смешанные коллекторы - порово-трещинные, порово-кавернозные, кавернозно-порово-трещинные, кавернозно-трещинные и т.д. Во всех этих типах коллекторов меняется соотношение кавернозной и поровой емкостей, доля трещинная емкости всегда существенно меньше и определяет проницаемость породы.

Было предложено много классификаций пород-коллекторов, в которых учитывались литология и количественные значения пористости и проницаемости.

Для терригенных коллекторов наиболее удобна классификация А.А.Ханина, в которой коллекторы делятся на шесть классов (табл. 1).

Карбонатные породы-коллекторы классифицируются исследователями по различным признакам. Наиболее полной классификацией, учитывающей литогенетические особенности пород, имеющие важное значение для емкостно-фильтрационных свойств карбонатных пород, является классификация К.И.Багринцевой (1977). Эта классификация основана на разделении коллекторов по проницаемости с учетом генезиса пород, их структуры и текстуры.

Таблица 1

Классификация терригенных коллекторов

(А.А.Ханин, 1969)

Класс коллек­тора

Порода

Эффективна)! пористость, %

Проницаемость, по газу, мД

Характеристика

коллектора по

проницаемости и

ёмкости

1

2

3

4

5

I

Песчаник среднезернистый Песчаник мелкозернистый Алевролит крупнозернистый Алевролит мелкозернистый

>16,5 >20 >23,5

>29

>1000 >1000 >1000

>1000

Очень высокая

II

Песчаник среднезернистый Песчаник мелкозернистый

15-1й,5 18-20

500-1060

500-1000

Высокая

III

Алевролит крупнозернистый Алевролит мелкозернистый Песчаник среднезернистый

21,5-23,5

26,5-29 11-15

500-1000

500-1000 100-500

Высокая Средняя

Песчаник мелкозернистый Алевролит крупнозернистый Алевролит мелкозернистый

14-18 16,8-21,5

20,5-26,5

100-500 100-500

100-500

-

rv

V

Песчаник среднезернистый Песчаник мелкозернистый Алевролит крупнозернистый Алевролит мелкозернистый Песчаник среднезернистый Песчаник мелкозернистый Алевролит крупнозернистый Алевролит мелкозернистый

5,8-11

8-14

10-16,8

12-20,5 0,5-5,8

2-8 3,3-10

3,6-12

10-100 10-100 10-100

10-100 1-10 1-10 1-10

Пониженная Низкая

VI

Песчаник среднезернистый Песчаник мелкозернистый Алевролит крупнозернистый Алевролит мелкозернистый

<0,5 <2

<з,з

<3,6

<1

<!

<1

<1

Весьма низкая

обычно не имеет

практического

значения

Породы, характеризующиеся низкой проницаемостью при перепадах давлений до первых сотен атмосфер и препятствующие фильтрации газа и нефти, называются покрышками.

Породы-покрышки бывают сложены глинами, глинистыми алевролитами, мергелями и галогенными породами.

Наилучшими экранирующими свойствами характеризуются пластичные породы, каковыми являются в первую очередь, каменные соли и глины. Строго говоря, все горные породы обладают в той или иной степени пластичностью, но каменные соли и глины характеризуются наибольшими скоростями пластических деформаций.

Однако, проявление пластичных свойств этих пород с увеличением глубины залегания разное. Глинистые толщи с увеличением глубины залегания утрачивают пластичные свойства вследствие выжимания из породы седиментационной воды с гидрослюдизации монтмориллонита, глинистого минерала способного набухать и придавать глинистой породе пластичность. С утратой пластичности глинистые породы превращаются в неразмокающие аргиллиты, становятся трещиноватыми и их изолирующие свойства снижаются. У каменных солей с увеличением глубины залегания напротив возрастает пластичность, а на глубине свыше 3 км преодолевается предел текучести и каменная соль приобретает свойство текучести.

По оценке И.В.Высоцкого около 70% всех покрышек образовано глинистыми толщами. В большинстве нефтегазоносных бассейнов мира залежи нефти и газа контролируются покрышками, сложенными глинистыми породами. В качестве примеров можно привести: верхнеюрско-валанжинскую и туронско-палеогеновую региональные покрышки в Западно-Сибирской нефтегазовой области; глинистые покрышки мелового - неогенового разреза Западного Предкавказья, глинистая толща олигоцена крупнейшей Сахаро-Ливийской нефтегазоносной провинции и др. В пределах Вилюйской синеклизы Республики Саха (Якутия) все открытые залежи газа и газоконденсата контролируются глинистыми покрышками.

Покрышки, сложенные галогенными породами, главным образом, каменной солью, контролируют многие крупнейшие месторождения нефти и газа: эвапоритовая толща среднемиоценового возраста (нижний фарс) в нефтегазоносной провинции Персидского залива, сульфатно-соленосная толща пермского возраста Центрально-Европейского нефтегазоносного бассейна, глинисто-соленосная толща Сахаро-Ливийской нефтегазоносной провинции. В пределах Непско-Ботуобинской антеклизы Сибирской платформы регионально распространены терригенно-сульфатно-карбонатные породы иктехской серии нижнего кембрия.

Природным резервуаром называется определенное соотношение в разрезе проницаемых (коллектор) и непроницаемых (покрышка) пород. По такому соотношению И.О.Брод предлагал выделять три основных типа природных резервуаров: пластовые резервуары, массивные резервуары, резервуары литологически ограниченные.

Пластовый резервуар представляет собой сочетание пласта-коллектора, ограниченного по кровле и подошве пласта непроницаемыми пластами (рис. 9). Этот тип природного резервуара встречается практически во всех нефтегазоносных бассейнах мира и не редко имеет региональное распространение в пределах нефтегазоносных областей и провинций. В качестве такого примера можно привести: нижнетриасовый, таганджинский резервуар в пределах восточной части Вилюйской синеклизы и центральной части Предверхоянского прогиба, в строении которого присутствуют мономская и неджелинская покрышки и таганджинская свита, сложенная преимущественно песчаниками; карбонатную толщу верхнеюрской формации араб, в которой выделяется несколько самостоятельных пластов трещиновато-кавернозных известняков, разделенных пластами ангидритов, глинистых сланцев и глин в Саудовской Аравии и Катаре. В частности, к этому резервуару приурочено второе в мире по запасам месторождение нефти Гавар

Рис. 9. Схема пластового резервуара. 1 - песчаник, 2 - глина.

(начальные запасы 10,1 млрд. т), а также месторождение Абкайк (начальные запасы 1,2 млрд. т). К этому типу резервуара приурочена подавляющая часть разведанных запасов нефти и газа в мире.

Массивный природный резервуар представляет собой сочетание толщи проницаемых пород (коллекторов) с толщей непроницаемых пород (покрышка) облекающей коллектор по кровле и с боков. Чаще всего резервуары такого типа приурочены к рифовым телам, эрозионным выступам (рис. 10).

Рис. 10. Схема массивных резервуаров (по Н.А.Еременко, 1968): а- однородного, б-неоднородного.

1 - песчаники, 2 - мергели, 3 - глины, 4 - доломиты, 5 - известняки, 6 -алевролиты, 7 - соленосные отложения.

Литологически ограниченный резервуар представляет собой чаще всего линзовидное тело породы-коллектора, ограниченное со всех сторон непроницаемыми породами. В качестве примеров можно привести залежи газа в линзах песчаников глинистой мономской свиты нижнего триаса Вилюйской синеклиэы, залежи нефти и газа в линзовидных телах баровых песчаников, известные во многих нефтегазоносных регионах мира (рис.

11)-

Рис. 11. Пример литологически ограниченного резервуара. Условные см. рис. 9.