- •Часть II
- •Введение
- •Раздел I особенности биологического уровня организации материи Системность живого
- •1.1 Иерархическая организация живого Биологические уровни организации материи
- •1.2 Отличительные признаки живого от неживого
- •Многообразие живых организмов – основа организации и устойчивости биосферы
- •Биологическое разнообразие жизни на земле
- •Вирусы.
- •Прокариоты
- •Бактерии
- •Строение бактерии
- •Размножение
- •Положительная роль бактерий
- •Сине-зеленые водоросли (цианеи)
- •Эукариоты. Строение растительной и животной клетки. Отличие прокариотической клетки от эукариотической.
- •Основные положения клеточной теории
- •Строение ядра. Строение хромосом. Кариотип. Геном.
- •Строение хромосомы.
- •Содержание в клетке химических соединений (в % на сырую массу) ю.И. Полянский
- •Неорганические вещества
- •Требования предъявляемые к органогенам:
- •Вода, ее роль для живой природы
- •Роль воды в живой системе – клетке:
- •Органические соединения Особенности органических биополимеров как высокомолекулярных соединений:
- •Нуклеиновые кислоты: днк и рнк
- •Синтез дhk
- •Функция днк в клетке:
- •1. Строение. Функции в клетке.
- •2. Структуры белка
- •3. Денатурация белка.
- •Генетический код
- •Свойства генетического кода
- •Биосинтез белка в клетке
- •Раздел II. Воспроизведение и развитие живых систем
- •1. Профаза.
- •4. Телофаза.
- •Половое размножение
- •Гаметогенез – процесс образования половых клеток Мейоз
- •Оплодотворение
- •Индивидуальное развитие организмов
- •Раздел III.Происхождение жизни Исторические концепции происхождения жизни на Земле
- •Основные этапы происхождения жизни на Земле
- •Основные стадии биопоэза
- •Абиогенное возникновение биологических мономеров (химическая эволюция).
- •Доказательство абиогенного синтеза
- •Свойства рнк
- •Концепции голо и генобиоза
- •Эволюция живых систем
- •Эволюционная теория ч. Дарвина
- •Генетика и эволюция
- •Моногибридное скрещивание.
- •Закон гомологических рядов в наследственной изменчивости н.И. Вавилова
- •Синтетическая теория эволюции. Ее основные положения.
- •Популяционные волны
- •Изоляция
- •Естественный отбор
- •Микроэволюция
- •Макроэволюция
- •Методы исследования эволюции
- •Развитие жизни на Земле
- •Геохронологическая таблица и история развития живых организмов
- •Основные таксономические группы растений и животных и последовательность их эволюции:
- •Закономерности самоорганизации. Принципы универсального эволюционизма.
- •Концепция самоорганизации в науке. Формирование идеи самоорганизации.
- •Отличие равновесных систем от неравновесных
- •Самоорганизация – источник и основа эволюции
- •Как же происходит эволюция?
- •Эволюции в социальных и гуманитарных системах
- •Универсальный эволюционизм, как научная программа современности
- •Раздел IV. Биосфера и человек. Экосистемы (многообразие живых организмов - основа организации и устойчивости биосферы). Понятия об экосистеме и биогеоценозе
- •Элементы экосистем (биотоп, биоценоз)
- •Виды природных экосистем
- •Биотическая структура экосистем
- •Энергетические потоки в экосистемах.
- •Солнце как источник энергии
- •Пищевые (трофические) цепи, пирамиды
- •Экологические пирамиды (схемы пищевых сетей)
- •Экологические факторы
- •Формы биотических отношений
- •Среда обитания и экологическая ниша
- •Толерантность, пределы толерантности
- •Закон минимума
- •Понятие о биосфере
- •Биогенная миграция атомов химических элементов
- •Структура и основные циклы биохимических круговоротов
- •Раздел V. Человек в биосфере.
- •1. История развития представлений о происхождении человека
- •Приматы
- •Палеонтологические доказательства происхождения человека. Основные этапы эволюции рода Homo и его предшественников (стадиальная концепция).
- •Этапы эволюции человека
- •Факторы антропогенеза
- •Экологические последствия неолитической революции
- •Влияние человека на функции живого вещества в биосфере.
- •Изменение временного фактора развития биосферных процессов.
- •Раздел VI. Глобальный экологический кризис (экологические функции литосферы, экология и здоровье)
- •Экологические кризисы в развитии биосферы и цивилизаций
- •Загрязнение окружающей среды
- •Индикаторы глобального экологического кризиса
- •Усиление парникового эффекта
- •Изменение концентрации основных парниковых газов в атмосфере Земли,
- •Проблема истощения озонового слоя.
- •Кислотные дожди.
- •Закисление озер в мире
- •Деградация водных ресурсов
- •Главные загрязнители воды
- •Приоритетные загрязнители водных экосистем по отраслям промышленности
- •Деградация земельных ресурсов
- •Уменьшение биоразнообразия
- •Понятие ноосферы как этапа развития биосферы при разумном регулировании отношений человека и природы
- •Раздел VII. Экология и здоровье человека Особенности роста и развития современного человека
- •Группировка факторов риска по их удельному весу для здоровья
- •Здоровье и факторы риска
- •Элементы экологии внутренней среды человека
- •Загрязненная внешняя среда, окружающие предметы
- •Трансформирующие агенты биосферы
- •Деградация генофонда человечества
- •Вредные привычки и среда обитания
- •Здоровый образ жизни граждан как основа устойчивого развития общества
- •Раздел VIII. Взаимосвязь космоса и живой природы, космические циклы
- •Солнечные циклы и здоровье человека
- •Биоритмология: узловые годы жизни человека
- •Среднепериодные биоритмы
- •Короткопериодные биоритмы
- •Физиологические особенности психики человека, основные эмоции
- •Эмоциональные реакции. Стресс и здоровье человека.
- •Причины обострения экологических проблем
- •Раздел IX. Принципы охраны природы и рационального природопользования
- •Биоэтика и её сущность
Строение хромосомы.
Х
ромосома
имеет центромеру – место первичной
перетяжки (рис. 11). Сюда присоединяются
нити веретена деления в метафазе митоза
и мейоза. Вторая перетяжка хромосомы
носит название ядрышковый организатор
– место образования ядрышек ядра в
конце деления клетки. Некоторые хромосомы
имеют спутники. По месту расположения
центросомы хромосомы делятся на
метацентрические(равноплечие),
убметацентрические (слабонеравно-плечие),
акроцентрические (сильно-неравноплечие)
(рис. 12).
В химическом отношении основу живого вещества составляет Рис. 11. Строение хромосомы
углерод, обладающий уникальной способностью создавать бесконечное множество разнообразных химических соединений.
Л юбая форма живого организма состоит из сочетаний немногих химических элементов. Например, 96% массы человеческого тела составляют такие весьма распространенные в биосфере элементы, как Н, С, N, О.
Остальные элементы входят в состав живых организмов в относительно небольших количествах,
Рис. 12. Классификация хромосом по Левитскому
несмотря на исключительно важную роль некоторых из них в физиологических функциях. Можно считать, что все элементы таблицы Менделеева входят в состав живого вещества планеты, но в различных количествах. Общий характер распространенности химических элементов в живом веществе по степени их содержания показан в табл. 1.
Таблица 1.
Содержание в клетке химических соединений (в % на сырую массу) ю.И. Полянский
-
Химические соединения
%
Вода
75 – 85
Белки
10-20
Жиры
1-5
Углеводы
0,2 – 2,0
Нуклеиновые кислоты
1 – 2
Низкомолекулярные органические соединения
0,1 – 0,5
Неорганические вещества
1,0 – 1,5
Живые организмы обладают избирательной способностью использовать химические элементы из внешней среды в соответствии со своими физиологическими потребностями. Многие элементы входят в состав как органических, так и минеральных соединений живых существ, Их можно подразделить на главные структурные элементы (С, Н, N, О, Р, S, Na, К, F, Mg, Si, Ca) и элементы-биокатализаторы (Fe, Си, В, Mn, J). Наиболее важные химические элементы живых организмов называют биофильными. Комбинация их атомов дает многообразие молекул органических веществ.
Однако различные формы жизни состоят из довольно небольшого числа простых молекул, относящихся к мономерам. Наиболее важные мономеры — аминокислоты, образующие белки. Живое вещество биосферы состоит преимущественно из длинных молекул, имеющих вид цепочек. Цепочки связываются друг с другом и образуют полимеры, в которых определенные структуры повторяются с небольшими вариациями. В полимерах бывают кольцевые структуры и боковые ответвления, а сами цепочки иногда сворачиваются в специфические сложные структуры. Эти структуры позволяют некоторым белковым полимерам проявлять себя в качестве катализаторов, ускоряющих протекание химических реакций. Такого рода органические катализаторы называются ферментами. Многообразие органических химических соединений обусловлено образованием различных полимеров из мономеров и сочетанием полимеров друг с другом различными способами. Основу живого вещества составляют углеводы, жиры, вода и нуклеиновые кислоты.
Углеводы — весьма распространенные органические соединения. Они представляют собой наиболее простые соединения углерода, состоящие из С, О, Н в разных отношениях, обычно выражаемых общей формулой СnН2nОn. К ним относятся моносахариды, например глюкоза и фруктоза (C6H12O6). В тканях животных встречается наиболее сложный сахарид — гликоген. Одна его молекула состоит из 1 тыс. молекул моносахаридов. В составе растений очень важной является клетчатка (целлюлоза), из которой построены стенки растительных клеток.
Жиры — сложные органические соединения, состоящие из сочетаний различных жирных кислот. В молекулах жиров атомы углерода образуют цепи, соединенные с атомами водорода. Кислорода очень мало. Структурная формула одной из жирных кислот приведена на рис. 1.
Белки — исключительно сложные органические природные соединения. Кроме С, О, Н, они содержат N, иногда S. Молекула обычного белка состоит из нескольких сот мономеров — аминокислот. Каждый тип белка отличается от другого типа набором аминокислот и порядком расположения их молекул в пространстве. Из большого числа возможных аминокислот только 20 относительно широко распространены в живых организмах. Средняя молекула белка, Состоящая из 100 молекул аминокислот, может дать 20100 комбинаций структур, что намного превышает число атомов в нашей Галактике. Однако большинство живых организмов синтезируют и используют менее 100 тыс. типов белковых молекул.
